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Abstract

In this paper, we make a study on three Linear Discriminant Analysis (LDA) based

methods: Regularized Discriminant Analysis (RDA), Discriminant Common Vec-

tors (DCV) and Maximal Margin Criterion (MMC) in the Small Sample Size (SSS)

problem. Our contributions are that: 1) we reveal that DCV obtains the same projec-

tion subspace as both RDA and wMMC (weighted MMC, a general form of MMC)

when RDA’s regularization parameter tends to zero and wMMC’s weight parame-

ter approaches to +∞, which builds on close relationships among these three LDA

based methods; 2) we offer efficient algorithms to perform RDA and wMMC in the

Principal Component Analysis transformed space, which makes them feasible and

efficient to applications such as face recognition; 3) we formulate the eigenvalue dis-

tribution of wMMC. On one hand, the formulated eigenvalue distribution can guide

practitioners in choosing wMMC’s projection vectors, and on the other hand, the

underlying methodology can be employed in analyzing the eigenvalue distribution

of matrices such as AAT −BBT , where the rows of A and B are far larger than their

columns; and 4) we compare their classification performance on several benchmarks

to get that, when the Mean Standard Variance (MSV) criterion is small, DCV can
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obtain competitive classification performance to both RDA and wMMC under op-

timal parameters, but when MSV is large, DCV generally yields lower classification

accuracy than RDA and wMMC under optimal parameters.

Key words: Regularized Discriminant Analysis (RDA), Discriminant Common

Vectors (DCV), Maximal Margin Criterion (MMC), Small Sample Size (SSS),

Eigenvalue Distribution.

1 Introduction

In applications such as face recognition, the sample dimensionality d is typi-

cally larger than n, the number of training samples, which leads to the so-called

Small Sample Size (SSS) problem and thus inevitably degrades the perfor-

mance of the designed classifier. To solve this problem, one main category

of methods is to perform Dimensionality Reduction (DR) by PCA (Principal

Component Analysis, Eigenfaces) [31] and LDA (Linear Discriminant Analy-

sis, Fisherfaces) [1]. The DR methods have been received wide interests in the

pattern recognition domain, and a nice guidance on the DR methods can be

found in [5]. As an unsupervised method, PCA looks for a subspace where the

samples have the minimum reconstruction error. In contrast to PCA, LDA

takes the class labels into consideration, and searches for a subspace where

the samples from the same class are as compact as possible and meanwhile

the samples from the different classes are as far as possible. The relationship

between PCA and LDA has been studied by Martinez, with the main results

∗ Corresponding author, Tel: +86-25-8489-6481 Ext 12106, Fax: +86-25-

8489-8069, E-mails: j.liu@nuaa.edu.cn (J. Liu), s.chen@nuaa.edu.cn (S. Chen),
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being: ”when the training data set is small, PCA can outperform LDA and,

also, that PCA is less sensitive to different training data sets” [20].

Naturally, it is very important to come up with new and effective dimension-

ality reduction methods, but we believe that a study of the existing methods

is also quite important, since it can correct some misunderstandings, guide

practitioners in choosing appropriate methods, build on relationships among

existing methods, and help invent better methods. In this paper, we make a

study on three methods: Regularized Discriminant Analysis (RDA) [6], Dis-

criminant Common Vectors (DCV) [3] and Maximal Margin Criterion (MMC)

[12,13] in the SSS problem, whose underlying motivations and contributions

are:

• These methods are all LDA based methods that can effectively deal with

the SSS problem, but the techniques employed are distinct: RDA is from

the viewpoint of regularization, DCV is originated from obtaining the pro-

jection subspace in the null space of the within-class scatter matrix, and

MMC aims at maximizing the average margin between classes. Therefore,

a comparison among them will shed light on these DR methods. Our main

argument is that DCV obtains the same projection subspace as both RDA

and wMMC (weighted MMC, a general form of MMC) when RDA’s regular-

ization parameter tends to zero and wMMC’s weight parameter approaches

to +∞.

• RDA is a classical and pioneer work that solves the SSS problem in LDA

and is widely cited in literature, e.g., [3,10,13], however, it is often criticized

for demanding space and time costs in applications such as face recognition

and is consequently seldom employed in face recognition. In this paper,

we show that RDA can be performed in the PCA transformed space and
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propose an efficient RDA algorithm in space and time complexities of O(dn)

and O(dn2), which are far more efficient than the original one’s O(d2) and

O(d3). Furthermore, O(dn) and O(dn2) are also the corresponding space

and time complexities of DCV, which has been proven to be a very efficient

DR method [3,15], and thus the newly proposed algorithm makes RDA both

feasible and efficient for face recognition.

• MMC is a good DR method that maximizes the average margin between

classes and is reported to be very effective for face recognition. However,

in [13], Li et al. suggested to utilize the eigenvectors corresponding to zero

eigenvalues for DR, which is a misunderstanding due to a lack of formu-

lating the inherent eigenvalue distribution of MMC. We reveal and prove

that, when the training samples are independent (it is usually the case with

applications such as face recognition), wMMC exactly has c − 1 (c is the

number of classes) positive, n − c negative, and d − n + 1 zero eigenval-

ues. The revealed eigenvalue distribution helps verify that the eigenvectors

corresponding to zero eigenvalues contain no discriminant information and

thus helps correct the aforementioned misunderstanding. Moreover, the un-

derlying methodology is also useful mathematically, e.g., in analyzing the

eigenvalue distribution of AAT −BBT , where A and B have the character-

istic that the number of rows are typically larger than that of columns.

• Similar to the original RDA, the space and time complexities of the original

MMC 1 are respectively O(d2) and O(d3) [12], which are very demanding for

applications such as face recognition. In this paper, we show that wMMC can

1 In [13], Li et al. claimed that they found an efficient algorithm for MMC, however,

as pointed in [17], the efficient algorithm proposed in [13] is problematic (refer to

Section 3.2 for further discussion).
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be performed in the PCA transformed space and offer an efficient wMMC

algorithm in space and time complexities of O(dn) and O(dn2), which are

far more efficient than the original MMC’s O(d2) and O(d3).

• We compare the classification performance of these three methods on several

benchmarks to get that, when the Mean Standard Variance (MSV) [15]

criterion is small, DCV can obtain competitive classification performance

to both RDA and wMMC under optimal parameters, but when MSV is

large, DCV generally yields inferior classification performance to RDA and

wMMC under optimal parameters.

In what follows, we briefly review these three methods in Section 2, develop

efficient algorithms for RDA and wMMC in Section 3, derive wMMC’s eigen-

value distribution in Section 4, reveal that DCV obtains the same projection

subspace as both RDA and wMMC under certain circumstances in Section 5,

report experimental results in Section 6, and draw a conclusion to this paper

in Section 7.

2 A Brief Review of These Three Methods

We assume that, the training set is composed of c classes C1, . . . , Cc, the i-

th class has ni training samples, xi
j denotes the j-th d-dimensional sample

from the i-th class, and n =
∑c

i=1 ni is the total number of training samples

which are generally independent in applications such as face recognition. The

within-class scatter matrix Sw and between-class scatter matrix Sb can be

respectively denoted as

Sw =
1

n

c∑

i=1

ni∑

j=1

(xi
j −mi)(x

i
j −mi)

T = HwHT
w , (1)
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Sb =
1

n

c∑

i=1

ni(mi −m)(mi −m)T = HbH
T
b , (2)

where Hw and Hb are

Hw =
1√
n

[
x1

1 −m1, . . . , x
1
n1
−m1, . . . , x

c
nc
−mc

]
, (3)

Hb =
1√
n

[
√

n1(m1 −m), . . . ,
√

nc(mc −m)] , (4)

mi is the centroid of the i-th class, and m is the centroid of the training set.

LDA looks for a projection matrix, W , that maximizes the Fisher’s criterion

JFisher(W ) = arg max
W

|W T SbW |/|W T SwW |. (5)

In applications such as face recognition, both Sw and Sb will be singular,

due to d À n or the so-called SSS problem, and as a result it is impossible

to directly calculate W from (5). Regularized Discriminant Analysis (RDA)

[6], Discriminant Common Vectors (DCV) [3] and Maximal Margin Criterion

(MMC) [12,13] are three methods that can deal with this problem and will be

respectively reviewed in Sections 2.1, 2.2 and 2.3.

2.1 Regularized Discriminant Analysis

To solve the singularity problem of Sw, RDA adds a multiple of identity matrix

to Sw, as Sw+αId, for some α > 0, where Id is a d×d identity matrix. Sw+αId

is nonsingular now and RDA’s projection vector w can be computed by

Sbw = λ(Sw + αId)w, (6)

or equivalently

(Sw + αId)
−1Sbw = λw. (7)
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Generally speaking, RDA employs those projection vectors (w’s) correspond-

ing to positive eigenvalues [25]. Further, when α tends to +∞, Sw + αId can

be regarded as αId and w becomes the eigenvector of Sb; and when α tends to

zero, w lies in the null space of Sw. As a result, the regularization parameter

α tunes the projection vector w between the range space of Sb and the null

space of Sw, which contains important discriminant information.

2.2 Discriminant Common Vectors

The idea of DCV is first mentioned by Belhumeur et al. in [1], where they

suggested to maximize the between-class scatter subject to the constraint that

the within-class scatter is zero, i.e.,

Wopt = arg max
W T SwW=0
W T W=Ic−1

|W T SbW |, (8)

where Ic−1 is a (c−1)× (c−1) identity matrix. It is obvious that the obtained

projection matrix Wopt will make the Fisher’s criterion (5) infinite. Following

this idea, Chen et al. [4] employed it for face recognition, but the proposed

method is not efficient; Huang et al. [10] proposed a PCA plus Null Space

(PNS) algorithm to realize this idea; Cevikalp et al. [3] proposed the DCV

method and revealed that the samples from the same class are projected to a

common vector; and in [15], we pointed out that the existing null space based

methods such as PNS and DCV in fact obtain the same projection subspace,

and showed that DCV can be implemented by a thin QR decomposition 2 [7],

2 Suppose A ∈ Rm×n has full column rank (m > n), then its thin QR decomposition

is: A = QR, where the column vectors in Q ∈ Rm×n span the range space of A and

R ∈ Rn×n is an upper triangle matrix.
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which makes DCV easy be understood and extended to the nonlinear form

using the kernel trick [27,28].

2.3 Weighted Maximal Margin Criterion

Weighted Maximal Margin Criterion (wMMC) 3 aims at maximizing the av-

erage margin between classes, where the weighted interclass margin between

the i-th class and the j-th class can be denoted as

d(Ci, Cj) = d(mi,mj)− β(S(Ci) + S(Cj)), (9)

d(mi,mj) is defined as the square Euclidean distance between mi and mj,

S(Ci) and S(Cj) are respectively defined as the traces of the scatter matrices

of the i-th and j-th classes, and β is a positive weight parameter. After some

deduction, the average margin between classes under projection matrix W is

J(W ) = tr(W T (Sb − βSw)W ). (10)

When β = 1, (10) is the objective function of MMC [12,13], and thus wMMC

just becomes MMC. Confining the column vectors in W to be unit vectors,

W that maximizes (10) can be calculated through the following eigenvalue

equation

(Sb − βSw)w = λw. (11)

Despite of the simplicities of the eigenvalue equations of RDA’s (7) and wMMC’s

(11), RDA and wMMC both manipulate on matrices of size d × d, and thus

3 The positive weight parameter β is added here for generality, and the weight

parameter was firstly employed in [34] to propose a weighted kernelized MMC.

Moreover, when β = 1, wMMC just reduces to MMC.
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they both have space and time complexities of O(d2) and O(d3). In appli-

cations such as face recognition, d is typically large, e.g., when the image

resolution is 100×100, d equals 10000 and it will cost bytes in the order of 108

for storage and floating operations (flops) [7] in the order of 1012 for computa-

tion, which are very expensive. As a result, 1) although RDA is widely cited

in the recent LDA based papers on face recognition, e.g., [3,10,13], it is seldom

implemented for face recognition; 2) in [12], when carrying out face recogni-

tion experiments by MMC, Li et al. resized the original image resolution of

112× 92 to 28× 23 for computation efficiency; and 3) in [13], Li et al. aimed

at developing an efficient algorithm for implementing MMC, but as revealed

in [17], their proposed efficient algorithm is problematic (refer to Section 3.2

for discussion). Therefore, efficient algorithms for RDA and wMMC are quite

necessary and will be discussed in the next section.

3 Efficient Algorithms for Regularized Discriminant Analysis and

Weighted Maximal Margin Criterion

Before proposing the efficient RDA and wMMC algorithms, we first discuss two

related studies on efficient algorithms. The first one is the efficient Eigenfaces

algorithm, which aims at solving the following eigenvalue equation

Stw = λw, (12)

where St = Sb + Sw is the total scatter matrix. In applications such as face

recognition, it is intractable to directly solve (12), since St is a typically large

d× d matrix. As an alternative, a commonly employed practice is to:
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1) Formulate (not to calculate) St as:

St = HtH
T
t , (13)

where Ht is computed as

Ht =
1√
n

[
x1

1 −m,x1
2 −m, . . . , x1

n1
−m, . . . , xc

nc
−m

]
, (14)

2) Take advantage of the existence of the following singular value decomposi-

tion

Ht = UΛV T , (15)

where U and V are respectively d × r and n × r matrices with orthonormal

columns, Λ is an r× r diagonal matrix containing the positive singular values

of Ht, r (≤ n− 1) is the rank of Ht (or equivalently St), and V and Λ can be

obtained by solving the following singular value decomposition

HT
t Ht = V Λ2V T , (16)

and 3) Obtain U according to (15) as

U = HtV Λ−1, (17)

which contains the eigenvectors of St corresponding to the positive eigenvalues

due to

St = HtH
T
t = UΛ2UT . (18)

Since we do not explicitly compute the d×d matrix St, and the largest matrix

we manipulate on is the d × n matrix Ht, the space and time complexities

of the aforementioned efficient Eigenfaces is O(dn) and O(dn2), which are far

less than O(d2) and O(d3) of directly solving (12).

The second related study is the Efficient Quadratic Regularization (EQR)
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method [8] for gene expression arrays. EQR aims at obtaining

β̂ = (XT X + λIp)
−1XT y, (19)

where X ∈ Rn×p is a gene expression array consisting of n samples and p

genes, p À n 4 , and y contains the descriptions for the n genes. (19) is very

expensive to compute, since p typically varies between 1,000 and 20,000 [8].

Hastie and Tibshirani converted the solution of (19) to

β̂ = V (XXT + λIn)−1RT y, (20)

where X = UDV T = RV T is the singular value decomposition of X. Since

(XXT + λIn) is of size n× n, far smaller than p× p, the size of (XT X + λIp),

and thus EQR can be much efficiently computed by converting (19) to (20).

A common characteristic of the techniques employed in deriving efficient Eigen-

faces and EQR algorithms lies in that, a primal problem is converted to a

corresponding dual problem. This technique of switching from a primal to

a dual formulation is nicely depicted in the representer theorem [27] and is

widely employed in designing learning algorithms such as support vector ma-

chine classifiers [28]. The efficient RDA and wMMC algorithms to be proposed

in Sections 3.1 and 3.2 will also employ such a technique. Moreover, due to

such conversion, the proposed efficient RDA and wMMC methods employ two

stages, namely, PCA and a further analysis in the PCA transformed space.

And Campbell and Atchley gave a geometrical analysis of such two stages in

[2].

4 Unlike face recognition, the number of samples is far larger than the dimension-

ality of samples in gene expression arrays.
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For convenience of discussion, we let Ũ 5 denote a d × (d − r) matrix whose

column vectors are the orthonormal eigenvectors of St corresponding to the

zero eigenvalues. By U defined in (15), we let S
′
w = UT SwU , S

′
b = UT SbU ,

S
′
t = UT StU , and Q and Q̃ respectively be the orthonormal eigenvectors of S

′
w

corresponding to zero and positive eigenvalues. Furthermore, since the column

vectors in
[
U Ũ

]
constitute a set of orthonormal bases for the space Rd, then

any w in Rd can be written as [7]:

w = Up + Ũ p̃, (21)

where p and p̃ are respectively r and d− r dimensional column vectors.

3.1 RDA in the PCA Transformed Space

Proposition 1 Regularized Discriminant Analysis in Small Sample Size prob-

lem can be performed in the Principal Component Analysis transformed space.

Proof: Since column vectors in Ũ are the eigenvectors of St corresponding to

zero eigenvalues, we have StŨ = 0, SwŨ = 0 and SbŨ = 0. Substituting (21)

into (6), we get:

SbUp = λSwUp + λα(Up + Ũ p̃). (22)

Pre-multiplying UT to both sides of (22), we get

S
′
bp = λ(S

′
w + αIn−1)p. (23)

Pre-multiplying ŨT to both sides of (22), we get

0 = λp̃. (24)

5 Just like St, there is no need to compute Ũ , and only its formulation is utilized.
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Since in RDA, we are interested in those eigenvectors corresponding to positive

eigenvalues, then from (24), we have

p̃ = 0. (25)

Further, substituting (25) into (21), we have

w = Up. (26)

From (26), we can clearly observe that RDA’s projection vector w is composed

of two parts: 1) U , which is the projection matrix of PCA; and 2) p, which is

the solution to (23), or the projection vector of RDA in the PCA transformed

space. As a result, this proposition is proved 2.

From Proposition 1, it is easy to observe that the w’s for RDA can be cal-

culated in terms of the following three steps: 1) calculate U ; 2) compute p’s

by (23) and 3) obtain w’s from (26). The time complexity can be analyzed

as: 1) U can be obtained in O(dn2); 2) S
′
b = UT SbU = (UT Hb)(U

T Hb)
T and

S
′
w = UT SwU = (UT Hw)(UT Hw)T can be respectively computed in O(dnc)

and O(dn2); 3) p’s can be obtained from (23) in O(n3) and 4) w’s can be got

from (26) in O(dnc), thus the time complexity for the newly proposed RDA

algorithm is O(dn2). Besides, it is easy to get that its space complexity is

O(dn), since all the matrices to be computed are not larger than d× n. Fur-

thermore, O(dn) and O(dn2) are just the space and time complexities of DCV

which has been proven to be an efficient DR algorithm [3,15], thus the newly

proposed RDA algorithm is not only feasible but also efficient to applications

such as face recognition.
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3.2 wMMC in the PCA Transformed Space

To overcome the high space and time complexities of directly solving eigen-

value equation (11), Li et al. tried to develop an efficient MMC algorithm

in [13]. To this end, they looked for a d × r transformation matrix P that

simultaneously diagonalizes Sb and St as

P T SbP = Λ̃, (27)

P T StP = Ir. (28)

Generally speaking, the transformation matrix P that satisfies both (27) and

(28) is unique, and can be computed as P = UΛ−1Ψ, where U and Λ2 contain

the eigenvectors and eigenvalues of St, and Ψ contains the eigenvectors of

Λ−1S
′
bΛ

−1. Li et al. then argued that P and 2Λ̃ − Ir are respectively the

eigenvectors and eigenvalues of Sb−Sw. However, as pointed out in [17], their

argument is problematic, since, although from (27) and (28) we can get

P T (Sb − Sw)P = 2Λ̃− Ir, (29)

we can not assure that P and 2Λ̃− Ir are the eigenvectors and eigenvalues of

Sb − Sw. As a result, MMC lacks an efficient algorithm.

Proposition 2 Weighted Maximal Margin Criterion in Small Sample Size

problem can be performed in the Principal Component Analysis transformed

space.

Proof: Keeping in mind SwŨ = 0 and SbŨ = 0, and substituting (21) into

(11), we get

(Sb − βSw)Up = λ(Up + Ũ p̃). (30)
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Pre-multiplying UT to both sides of (30), we get

(S
′
b − βS

′
w)p = λp. (31)

Pre-multiplying ŨT to both sides of (30), we get

0 = λp̃. (32)

Generally speaking, since the objective of wMMC is to maximize (10), we

are only interested in eigenvectors corresponding to positive eigenvalues 6 .

Therefore, from (32) we have

p̃ = 0. (33)

Further, substituting (33) into (21), we have

w = Up. (34)

From (34), we can clearly observe that wMMC’s projection vector w is com-

posed of two parts: 1) U , which is the projection matrix of PCA; and 2) p,

which is the solution to (31), or the projection vector of wMMC in the PCA

transformed space. As a result, wMMC in SSS problem can be performed in

the PCA transformed space, which ends the proof of this proposition 2.

From Proposition 2, it is easy to observe that the w’s for wMMC can be

calculated in terms of the following three steps: 1) calculate U ; 2) calculate

p’s by (31); and 3) obtain w’s from (34). Following similar analysis as in

6 Li et al. [13] argued that the eigenvectors corresponding to zero eigenvalues can

still be utilized, however, as will be revealed in Section 4, in applications such as

face recognition, the training samples are usually independent and the eigenvectors

corresponding to zero eigenvalues contain no discriminant information and should

not be utilized.
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Section 3.1, it is easy to get that the space and time complexities of the newly

proposed efficient wMMC algorithm are respectively O(dn) and O(dn2), much

more efficient than O(d2) and O(d3) of the original MMC algorithm, when d

is typically larger than n in applications such as face recognition.

4 Eigenvalue Distribution of wMMC

In this section, we reveal the eigenvalue distribution of wMMC to facilitate

choosing its projection vectors. Since Sb−βSw is a very large d×d matrix, it is

expensive and intractable to explicitly compute all of its eigenvalues. Sb−βSw

can be generalized to such matrix form as AAT −BBT , where both A and B

are rank deficient and have much more rows than columns. Our methodology

for revealing the eigenvalue distribution of AAT−BBT is that: 1) we make full

advantage of the fact that both A and B are rank deficient, and obtain a d×r

(r = rank([A B])) matrix U , which spans the range space of matrix [A B]

and can be efficiently computed by tools such as Gram-Schmidt Decomposition

and Singular Value Decomposition [7]; 2) we denote (note, not calculate) Ũ

as the orthogonal complement of U ; and 3) we let P =
[
U Ũ

]
and employ

Sylvester’s Law of Intertia [7] to get that AAT −BBT has at least d− r zero

eigenvalues and at most r non-zero eigenvalues. Since r is far less than d, it is

not expensive to further obtain the signs of the at most r non-zero eigenvalues

in the U transformed space.

In the discussion in this section, we assume that the n training samples are

independent (i.e., r = n− 1), which is usually the case with applications such

as face recognition. Moreover, considering the facts that rank(S
′
w) ≤ n− c,

rank(S
′
b) ≤ c− 1, and rank(S

′
w) + rank(S

′
b) ≥ rank(S

′
t) = n − 1, we have
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rank(S
′
w) = n−c, rank(S

′
b) = c−1, Q and Q̃ are respectively (n−1)× (c−1)

and (n− 1)× (n− c) matrices. In the following, we first give two lemmas and

then formulate the eigenvalue distribution of wMMC.

Lemma 1 (Sylvester’s Law of Intertia) [7] Let A be any symmetric ma-

trix, P be any non-degenerate matrix and B = P T AP . Then, π(A) = π(B),

ν(A) = ν(B), δ(A) = δ(B), where π(.), ν(.) and δ(.) respectively denote the

number of positive, negative and zero eigenvalues of given matrix.

Lemma 2 Let B be any k×k symmetric matrix, C be any k×(d−k) matrix,

D be any (d− k)× (d− k) symmetric matrix and

A =




B C

CT D




. (35)

If B is positive definite, then π(A) ≥ k; and if B is negative definite, then

ν(A) ≥ k.

Proof: Let O be a (d− k)× k zero matrix and P be a matrix defined as

P =




Ik −B−1C

O Id−k




, (36)

we have

P T AP =




B OT

O D − CT B−1C




. (37)

When B is positive definite, it is clear that π(P T AP ) ≥ k; and similarly, when

B is negative definite, ν(P T AP ) ≥ k. Furthermore, since P defined in (36) is

a non-degenerate matrix, then employing Lemma 1 this lemma is proved 2.
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Proposition 3 When the n training samples are independent and β is posi-

tive, the matrix Sb−βSw exactly has c−1 positive, n−c negative and d−n+1

zero eigenvalues.

Proof: We will prove this proposition in the following three steps:

1) Let P =
[
Ũ U

]
which is a non-degenerate matrix, we have

P T (Sb − βSw)P =




O1 OT
2

O2 UT (Sb − βSw)U




, (38)

where O1 and O2 are respectively (d−n+1)×(d−n+1) and (n−1)×(d−n+1)

zero matrices. From Lemma 1, one can easily get δ(Sb − βSw) ≥ d− n + 1.

2) Since S
′
t is positive definite and [Q Q̃] is an orthonormal matrix, then

[
Q Q̃

]T
(S

′
w + Sb

′)
[
Q Q̃

]
=




QT Sb
′Q QT Sb

′Q̃

Q̃T Sb
′Q Q̃T (Sw

′ + Sb
′)Q̃)




(39)

is positive definite, and so is QT Sb
′Q. Let P = [UQ UQ̃ Ũ ], we have

P T (Sb − βSw)P =




QT Sb
′Q C

CT D




, (40)

where C = (UQ)T (Sb−βSw)
[
UQ̃ Ũ

]
and D =

[
UQ̃ Ũ

]T
(Sb−βSw)

[
UQ̃ Ũ

]
.

Since P is a non-degenerate matrix and QT Sb
′Q is positive definite, then uti-

lizing Lemmas 1 and 2, we can easily get π(Sb-βSw) ≥c-1.

3) Let R and R̃ respectively be the orthonormal eigenvectors of S
′
b corre-

sponding to zero and non-zero eigenvalues, where R and R̃ are respectively
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(n− 1)× (n− c) and (n− 1)× (c− 1) matrices. Following similar deduction

as 2), we can get ν(Sb − βSw) ≥ n− c.

Finally, summarizing the results from the above three steps and taking notice

of the fact that π(Sb−βSw)+ν(Sb−βSw)+ δ(Sb−βSw) = d, this proposition

is proved 2.

The revealed eigenvalue distribution of weighted MMC in Proposition 3 can

guide us to select wMMC’s projection vectors in the case that the training

samples are independent, and an analysis is given as follows: on one hand, the

d− n + 1 column vectors in Ũ are the eigenvectors of Sb− βSw corresponding

to zero eigenvalues and the training samples become a common vector when

projected by Ũ , and thus such Ũ contains no discriminant information; on the

other hand, d− n + 1 is just the number of Sb − βSw’s zero eigenvalues, and

thus we can say that, in wMMC, the eigenvectors corresponding to zero eigen-

values contain no discriminant information for classification and we usually

only utilize the c − 1 eigenvectors corresponding to the positive eigenvalues

for DR.

In the end of this section, it should be noted that, when some training samples

are dependent (this seldom happens in applications such as face recognition),

r should be less than n − 1, and the number of zero eigenvalues of Sb − βSw

should be over d−n+1. And in this case, although the eigenvectors of Sb−βSw

corresponding to zero eigenvalues do not benefit the maximization of wMMC’s

objection function (10), some of them (excluding the d− r eigenvectors of St

corresponding to zero eigenvalues) might contain some discriminant informa-

tion for classification.
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5 Relationships among RDA, wMMC and DCV

In this section, we reveal the relationship between DCV and wMMC in Sec-

tion 5.1 and the relationship between DCV and RDA in Section 5.2, and

give two criteria in Section 5.3 for convenience of empirical evaluation of the

relationships among these three methods.

5.1 DCV versus wMMC

Proposition 4 Discriminant Common Vectors obtains the same projection

subspace as weighted Maximal Margin Criterion when the latter’s weight pa-

rameter β approaches to +∞.

Proof: Since the column vectors in Q are the orthonormal eigenvectors of S
′
w

corresponding to zero eigenvalues, then S
′
wQ = 0. Further, since

[
Q Q̃

]
is an

orthonormal matrix, thus the p in (31) can be denoted as:

p = Qq + Q̃q̃. (41)

Substituting (41) into (31), we get

(S
′
b − βS

′
w)(Qq + Q̃q̃) = λ(Qq + Q̃q̃). (42)

Pre-multiplying q̃T Q̃T to both sides of (42), we get

q̃T Q̃T S
′
b(Qq + Q̃q̃)− βq̃T Q̃T S

′
wQ̃q̃ = λq̃T q̃. (43)

Pre-multiplying qT QT to both sides of (42), we get

qT QT S
′
b(Qq + Q̃q̃) = λqT q. (44)
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Adding (43) and (44) and employing (41), we can get

pT S
′
bp− βq̃T Q̃T S

′
wQ̃q̃ = λ(q̃T q̃ + qT q). (45)

If w is a unit vector, then pT p = 1 and q̃T q̃ + qT q = 1. Moreover, pT S
′
bp ≤

tr(S
′
b), where tr(S

′
b) is a positive and finite number for given training samples,

and Q̃T S
′
wQ̃ is a positive definite matrix since Q̃ is composed of the eigenvec-

tors of S
′
w corresponding to positive eigenvalues. As a result, when β tends to

+∞, λ tends to -∞ so long as q̃ is not a zero vector. Consequently, in order to

ensure that λ > 0, q̃ must be a zero vector. Employing (41), we have p = Qq,

where q can be calculated through pre-multiplying QT to (42) as

QT S
′
bQq = λq. (46)

Put the accordingly obtained c−1 q’s as column vectors in a matrix V , then V

is an orthormal matrix due to the fact that QT S
′
bQ is positive definite (see the

proof of Proposition 3). Thus, when β tends to +∞, the projection matrix for

wMMC is UQV, which is just the projection matrix for PNS [10] and has been

proven to span the same subspace as DCV in [15]. As a result, DCV obtains

the same projection subspace as wMMC when the latter’s weight parameter

β tends to +∞, and this ends the proof of this proposition 2.

5.2 DCV versus RDA

Proposition 5 Discriminant Common Vectors obtains the same projection

subspace as Regularized Discriminant Analysis when the latter’s regularization

parameter α tends to be zero.
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Proof: Adding λS
′
b to both sides of (23) and letting λ̃ = λ/(λ + 1), we will get

S
′
bp = λ̃(S

′
t + αIn−1)p. (47)

It is obvious that, for given pair of λ and λ̃, the eigenvectors obtained respec-

tively by (23) and (47) are the same. When α tends to zero, the c−1 non-zero

eigenvalues for (47) are all ones, and Q makes up of the corresponding c − 1

eigenvectors, since S
′
bQ = S

′
tQ. The projection matrix obtained by RDA in

this case should be UQ, which spans the same subspace as UQV (note that

as proven in Proposition 4, V is orthonormal) or DCV. As a result, DCV ob-

tains the same projection subspace as RDA when the latter’s regularization

parameter α tends to be zero, and this ends the proof 2.

Although DCV, RDA, and wMMC are originated distinctly, they in fact have

close relationships as revealed in Propositions 4 and 5. Furthermore, the re-

vealed relationships can guide us in choosing dimensionality reduction meth-

ods in practical application, and an analysis is given as follows:

DCV achieves the maximum (infinite) of the Fisher’s criterion (5), however,

this does not mean that it can always obtain the optimal classification ac-

curacy or generalization ability in all applications. In other words, extremely

high (here infinite) Fisher’s criterion value does not definitely yield better

generalization ability. In [15], it was argued by us that when the Mean Stan-

dard Variance (MSV) criterion (refer to Section 5.3.1 for the definition) that

measures the compactness of the training samples from the same classes is

relatively small, DCV can achieve better performance than other methods,

but on the contrary, when MSV is relatively large, DCV can not assure supe-

rior performance. In practical applications, RDA and wMMC may be better

choices than DCV, since: 1) as revealed by Propositions 4 and 5, DCV in
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fact obtains the same projection subspace as RDA and wMMC under certain

circumstances, namely, DCV is a special case of both RDA and wMMC; and

2) by adapting the parameters with the specific data, better generalization

performance can be obtained by RDA and wMMC. Moreover, we think it

is meaningful and important to come up with the data dependent rules for

automatically setting the parameters in both RDA and wMMC.

5.3 Two Criteria

5.3.1 Mean Standard Variance

In [15], we gave a Mean Standard Variance (MSV) criterion for explaining

the experimental phenomena that DCV works better than other methods on

some databases, but not on some others. The MSV criterion measures the

compactness of the training samples from the same classes, and is defined as

[15]:

MSV =
1

c

c∑

i=1

SVi, (48)

where SVi is the standard variance of the i-th class defined as

SVi =
1

d

d∑

k=1

√√√√ 1

ni − 1

ni∑

j=1

(xi
jk −mik)2, (49)

with xi
jk and mik respectively denoting the k-th element of the d-dimensional

samples xi
j and class mean mi. From (48) and (49), we can know that MSV

can measure the variations among the samples from the same class, and when

MSV is small, the training samples from the same class have relatively small

variations and vice versa. Moreover, since DCV concentrates the training sam-

ples from the same class to a common vector, then it is reasonable that, when

MSV is relatively small, DCV can perform well, but when MSV is relatively
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large, it performs poorly since the projection subspace overfits the training

samples [15]. Here, we employ the MSV criterion to get some insights into

the relationships among RDA, wMMC and DCV in terms of classification

performance.

5.3.2 Subspace Distance

To measure the distance between subspaces S1 and S2, where the columns

vectors in P1 ∈ Rd×k and P2 ∈ Rd×k are respectively their orthonormal base

vectors, we employ the subspace distance defined in [7] as

dist(S1, S2) = ||P1P
T
1 − P2P

T
2 ||2 =

√
1− cos2θ, (50)

where ||.||2 is the matrix 2-norm, θ is the maximal principal angle between

S1 and S2, and cos(θ) equals the minimal singular value of P T
1 P2. Gener-

ally speaking, 0 ≤ dist(S1, S2) ≤ 1, and S1 is identical to S2 if and only if

dist(S1, S2) = 0.

6 Experiments

In this section, we carry out experiments to support the arguments made in

this paper and to compare the classification performance of these methods. In

the following, we describe databases and experimental settings in Section 6.1,

and then report experimental results in Section 6.2.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Fig. 1. Illustration of 10 images of one subject from ORL face database.

Table 1

Data partition on ORL face database

Category Training Testing

ORL1 1-2 3-10

ORL2 1-3 4-10

ORL3 1-4 5-10

ORL4 1-5 6-10

6.1 Database description and experimental setting

6.1.1 Database description

We conduct experiments on the following three benchmarks: ORL 7 face database,

AR [21] face database, and the COIL-20 [22] object database.

The ORL face database contains ten different images of each of 40 distinct

subjects. All the images were taken against a dark homogeneous background

with the subjects in an upright, frontal position (with tolerance for some side

movement). The size of each image is 112× 92 pixels, with 256 grey levels per

pixel, and Fig. 1 illustrates the ten images of one subject, which are numbered

between 1 and 10. In our experiments here, the face images are resized to a

7 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 2. Illustration of 14 images of one subject from AR face database.

Table 2

Data partition on AR face database

Category Training Testing

AR1 a, h b-g, i-n

AR2 a, b, h, i c-g, j-n

AR3 a, e, h, l b-d, f-g, i-k, m-n

AR4 a-d, h-k e-g, l-n

AR5 a, e-g, h, l-n b-d, i-k

resolution of 56 × 46, and the grey level values of all images are rescaled to

[0 1]. We carry out four independent experiments ORL1, ORL2, ORL3 and

ORL4, where the training samples and testing samples are summarized in

Table 1. It is obvious that, on ORLi (i = 1, 2, 3, 4), the first i + 1 face images

of each subject are employed for training while the rest for testing, and thus

the experiments on ORL1-ORL4 can test the performance of given method

under different number of training samples per subject.

AR consists of over 3200 frontal images of 126 subjects. Each subject has 26
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different images which were grabbed in two different sessions separated by

two weeks, and 13 images in each session were recorded. In our experiments

here, we use a subset of the AR face database provided and preprocessed by

Martinez. This subset contains 1400 image faces corresponding to 100 objects

(50 men and 50 women) where each subject has 14 non-occluded images with

variations in expression and illumination (see Fig. 2 for the 14 images of one

subject). Here, the images are resized to 66 × 48 and the gray level values

are rescaled to [0 1]. We carry out five independent experiments AR1, AR2,

AR3, AR4, AR5, where the training and testing samples are summarized in

Table 2. From Fig. 2 and Table 2, we can clearly observe that: 1) on AR1,

the training samples from each subject have relatively low variations (both of

neural expression), and the testing samples have great variations in expression

and illumination; 2) on AR2, the four training samples from each subject have

variations in expression, and the testing samples have variations in expression

and illumination; 3) on AR3, the four training samples from each subject have

variations in expression and illumination, and the testing samples have vari-

ations in expression and illumination; 4) on AR4, the eight training samples

from each subject have great variations in expression, and the testing samples

have great variations in illumination; 5) on AR5, the eight training samples

from each subject have great variations in illumination, and the testing sam-

ples have great variations in expression. Consequently, these five experiments

can test the performance of given method under different kinds of difficulty in

the training set and testing set.

Columbia Object Image Library (COIL-20) is a database of gray-scale images

of 20 objects. The objects were placed on a motorized turntable against a

black background. The turntable was rotated through 360 degrees to vary
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Fig. 3. Illustration of 20 objects in the COIL-20 object database.

Table 3

Data partition on COIL-20 object database

Category Training Testing

COIL1 0, 1, 2, 3 4-71

COIL2 0, 4, 8, 12 1-3, 5-7, 9-11, 13-71

COIL3 0, 8, 16, 24 1-7, 9-15, 17-23, 25-71

COIL4 0, 12, 24, 36 1-11, 13-23, 25-35, 37-71

COIL5 0, 16, 32, 48 1-15, 17-31, 33-47, 49-71

object pose with respect to a fixed camera. Images of the objects were taken

at pose intervals of 5 degrees, and each object has 72 (numbered between 0 and

71) images with a resolution of 128×128. Fig. 3 illustrates the 20 objects in the

COIL-20 object database. Here, we resize the image resolution to 64× 64 and

rescale the grey level value to [0 1]. We set the number of training samples per

class to 4, and carry out five independent experiments COIL1, COIL2, COIL3,

COIL4 and COIL5, where the training and testing samples are summarized

in Table 3. These five experiments are employed to test the performance of

given method under different kinds of variations in the training set.
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6.1.2 Experimental setting

For RDA, we let α = λmax(S
′
w)et−21, where λmax(S

′
w) denotes the maximal

eigenvalue of S
′
w and t varies from 1 to 21 incremented by 1, and when reporting

the best classification performance of RDA under given α, we also report its

logarithm value ln(α/λmax(S
′
w)). Similarly, for MMC, we let β = et−5, where t

varies from 1 to 21 incremented by 1, and when reporting the best classification

performance of wMMC under given β, we also report its logarithm value ln(β).

For methods such as DCV, RDA, wMMC, Fisherfaces and Pseudo-inverse

Linear Discriminant Analysis (PLDA) [18,26,30], the number of projection

vectors is set to the number of classes minus 1, i.e., c − 1. The Fisherfaces

here operates as [1], namely, PCA first projects the d-dimensional samples

to a dimensionality of n − c, and then LDA is applied. Moreover, when the

features are extracted by the given method, a nearest neighbor classifier using

Euclidean distance is utilized for reporting classification accuracy.

6.2 Results

We report results on the eigenvalue distribution of wMMC to support Propo-

sition 3 in Section 6.2.1, results on the subspace distances between the projec-

tion subspaces of RDA (wMMC) and DCV to support Propositions 4 and 5 in

Section 6.2.2. We report results on the values of MSV on different partitions

of ORL, AR and COIL-20 in Section 6.2.3, and the classification performance

of DCV, wMMC, RDA, Fisherfaces and PLDA in Section 6.2.4.
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6.2.1 Results on the eigenvalue distribution of wMMC

The experimental results on ORL1-ORL4, AR1-AR5, and COIL1-COIL5 con-

sistently show that the n training samples are always independent, and the

eigenvalue equation (31) has c − 1 positive and n − c negative eigenvalues.

Further, based on the number of positive and negative eigenvalues and em-

ploying (38) and Lemma 1, we can clearly get that Sb-βSw has d− n + 1 zero

eigenvalues. As a result, Proposition 3 is experimentally verified.

6.2.2 Results on the subspace distance

We choose ORL1, ORL4, AR1, AR5, COIL1 and COIL5 as representatives and

report the subspace distances between the projection subspaces of DCV and

RDA (wMMC) under different α’s (β’s) in Fig. 4, from which one can easily

observe that when t is less than 4, the subspace distance between the projection

subspaces of RDA and DCV is 0; and similarly, when t is greater than 18,

the subspace distance between the projection subspaces of wMMC and DCV

is 0. Furthermore, the experimental results on ORL2-ORL3, AR2-AR4, and

COIL2-COIL4 witness the same phenomena. Therefore, Propositions 4 and 5

are experimentally verified.

By the way, from Fig. 4, it is easy to get that MMC (or setting β = 1 in

wMMC) is not equivalent to DCV (or PNS), since the subspace distance be-

tween MMC and DCV is not zero. Thus the argument that MMC is actually

equivalent to PNS in SSS problem made in [13] is corrected here.
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Fig. 4. Substance distance.

6.2.3 MSV criterion

We present the MSV values of each database partition in Tables 4, 5 and 6.

From these three tables, we can get that: 1) the MSV values of ORL1-ORL4 are

relatively small, which attributes to the fact that ORL is a relatively easy face

database with relatively small variations among face images; 2) the MSV value

of AR1 is quite small, which is due to the fact that the two training samples
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Table 4

Results on ORL

ORL1 ORL2 ORL3 ORL4

MSV 0.06 0.07 0.08 0.08

Fisherfaces 77.19 81.07 85.83 83.50

PLDA 67.50 77.14 86.67 89.00

DCV 84.06 86.43 91.67 91.50

RDA 85.31 (-2) 88.21 (-1) 92.08 (-3) 92.00 (-4)

wMMC 85.63 (2) 86.43 (1) 92.08 (3) 91.50 (4)

from the same subject are of small variations (both of neutral expression),

but the MSV value of AR5 is relatively large, since the eight training samples

from the same subject are of great variations in illumination; and 3) with i

increasing, COILi generally has larger MSV value, which is due to the fact that

the four training samples from the same subject are taken at pose intervals of

higher degrees, but COIL4 has smaller MSV value than COIL3, which might

attribute to the symmetry characteristic of some objects, e.g., for the object

in the second row and first column in Fig. 3, its image numbered 0 is nearer

to the one numbered 36 than the ones numbered 8, 16 and 24.

6.2.4 Classification performance

The classification accuracies on ORL1-ORL4, AR1-AR5 and COIL1-COIL5

are respectively reported in Tables 4, 5 and 6, where the classification accu-

racies of RDA and wMMC in these tables are their optimal results, together
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Table 5

Results on AR

AR1 AR2 AR3 AR4 AR5

MSV 0.06 0.08 0.11 0.10 0.17

Fisherfaces 69.25 73.10 81.80 75.67 74.50

PLDA 63.50 70.70 86.00 73.67 78.00

DCV 80.83 79.30 83.00 87.67 78.33

RDA 80.83 (-20) 81.50 (-5) 86.80 (-7) 87.83 (-12) 86.00 (-5)

wMMC 83.92 (4) 84.60 (3) 86.00 (3) 88.00 (7) 85.00 (-4)

Table 6

Results on COIL-20

COIL1 COIL2 COIL3 COIL4 COIL5

MSV 0.04 0.11 0.14 0.12 0.14

Fisherfaces 58.46 72.35 82.21 82.80 75.15

PLDA 58.02 73.09 81.77 83.53 76.03

DCV 64.19 77.87 86.25 87.79 80.00

RDA 65.00 (-1) 80.07 (0) 89.93 (-1) 89.19 (-1) 84.93 (0)

wMMC 65.81 (-3) 80.22 (-4) 90.44 (0) 90.15 (0) 85.00 (-3)

with ln(α/λmax(S
′
w)) and ln(β) in the parentheses. Furthermore, we also plot

the classification performance of RDA or wMMC under different α’s or β’s on

ORL1, ORL4, AR1, AR5, COIL1 and COIL5 in Fig. 5.
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Fig. 5. Classification performance.

Now, we analyze the classification performance as follows:

1) as the results reported in [3], DCV can generally yield superior classifi-

cation performance to Fisherfaces. The underlying reason might be that, in

Fisherfaces, some directions corresponding to the small eigenvalues of St are

thrown away in the PCA step, and thus applying PCA for dimensionality re-

duction has the potential to remove dimensions that contain discriminative
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information [3].

2) DCV can generally obtain higher classification accuracies than PLDA. The

underlying reason might be that, the projection vectors of PLDA are in fact in

the range space of Sw (refer to [18] for detail), complement to the projection

vectors of DCV (note, the projection vectors of DCV reside in the null space

of Sw), and thus DCV fulfills the objective of LDA better than PLDA (note,

the Fisher’s criterion (5) for DCV is +∞ while that for PLDA is finite).

3) when MSV is relatively small (e.g., on ORL1-ORL2, AR1-AR2 and COIL1),

DCV’s advantage over Fisherfaces and PLDA is quite obvious, but when MSV

is relatively large (e.g., on AR5), DCV just obtains competitive classification

performance to Fisherfaces and PLDA. The underlying reason might be that,

when MSV is small, the samples from the same class have small variations,

and thus it is reasonable that they are concentrated to a common vector;

while on the contrary, when MSV is relatively large, overfitting will occur in

DCV, since it still concentrates the same class samples with great variations

to a common vector, however in this case, it is reasonable and preferable for

Fisherfaces and PLDA to acknowledge the great variations among the same

class samples and project these samples to different vectors.

4) since DCV is a special case of RDA and wMMC when α and β respec-

tively tend to zero and +∞, then it is natural that the optimal classification

accuracies of RDA and wMMC are not inferior to DCV.

5) on one hand, when MSV is relatively small (e.g., on ORL1-ORL4, AR1-

AR2 and COIL1), the classification performance of DCV is competitive to

the optimal performance of RDA and wMMC. Furthermore, turning to the

classification accuracy curves of RDA and wMMC under different α’s and
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β’s on ORL1, ORL4, AR1 and COIL1 (illustrated in Fig. 5), one can easily

get that RDA or wMMC under any given parameter α or β obtains either

inferior or competitive performance to DCV. On the other hand, when MSV is

relatively high (e.g., on AR5 and COIL5), the optimal classification accuracies

of RDA and wMMC are higher than those of DCV. Moreover, turning to the

classification accuracy curves of RDA and wMMC under different α’s and

β’s on AR5 and COIL5 (illustrated in Fig. 5), one can clearly see that RDA

and wMMC under all α’s and β’s almost always obtain better classification

performance than DCV. The underlying reason is as described in 3), namely,

when MSV is small, it is intuitively reasonable for DCV to concentrate the

same class samples with small variations to a common vector; while when MSV

is high, it would be better to employ positive α and finite β that acknowledge

the great variations among the samples from the same class in order to prevent

overfitting.

6) the results on ORL1-ORL4 shows that, all the methods can generally benefit

from more training samples per person. The results on AR1-AR5 show that,

when the parameters α and β are well-tuned, RDA and wMMC generally

can benefit from more training samples per class, but the performances of

Fisherfaces, PLDA and DCV are influenced by the training samples employed.

For example, the number of training samples per subject is 4 for AR3 and 8

for AR4, but the classification accuracies of Fisherfaces and PLDA on AR4 are

lower than those on AR3, which might be that, AR3 utilizes the samples that

have variations in both expression and illumination for training, but AR4 only

employs the samples that have variations in expression. The results on COIL-

20 further reveal the importance of employing proper training samples, since

although the number of training samples per class is 4 for COIL1-COIL5, the
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classification accuracies are quite different. Moreover, it is reasonable that the

classification accuracies (of all the methods) on COIL3 are higher than those

on COIL1 and COIL2, since the four training samples of COIL3 can represent

the COIL-20 object library better than the training samples of COIL1 and

COIL2. As a result, in the SSS problem, it is very important to employ proper

and representative training samples.

7 Conclusion

In this paper, we first reveal that RDA and wMMC in SSS problem can be

performed in the PCA transformed space and propose efficient algorithms for

RDA and wMMC to be implemented in space and time complexities of O(dn)

and O(dn2) respectively, which are much more efficient than the original ones’

O(d2) and O(d3). Therefore, both RDA and wMMC can be applied to areas

such as face recognition much more efficiently.

Second, we reveal the eigenvalue distribution for wMMC in the case that the

training samples are independent. On one hand, such a revelation facilitates

choosing projection vectors in wMMC, and on the other hand, the underly-

ing methodology can be employed to analyze the eigenvalue distribution of

matrices such as AAT -BBT , where A and B have the characteristic that the

number of rows are typically larger than that of columns.

Third, we reveal the relationships among these three powerful DR methods,

namely, when α and β respectively tend to 0 and +∞, both RDA and wMMC

will obtain the same projection subspace as DCV, or equivalently, DCV is

in fact a special case of RDA and wMMC under the aforementioned circum-
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stances.

Finally, we compare the classification performance among the three methods

to show that, when the MSV criterion is relatively small, DCV can obtain

competitive recognition accuracy as both RDA and wMMC under optimal

parameters α and β; but when the MSV criterion is relatively high, the optimal

classification accuracies of both RDA and wMMC are generally higher than

DCV.

In our viewpoint, it is worthwhile to carry out the following studies:

1) The three methods discussed in this paper are mainly for SSS problem,

but we think it interesting to extend them to the large sample size problem. A

possible way is to resample the training samples to yield a set of SSS represen-

tations of the original question and then to ensemble the results of these SSS

representations by these methods. In fact, the recent papers such as [14,19]

have witnessed the usefulness and powerfulness of the resampling technique

in ensembling the results of SSS methods such as Fisherfaces.

2) It is meaningful to offer the boundary of MSV for employing DCV in real

applications and to come up with some criteria for automatically setting α (for

RDA) and β (for wMMC) appropriate values in case of high MSV, where the

criteria should take both the training samples and the given testing sample

into consideration. Moreover, for DCV, a possible countermeasure in the case

of high MSV value is to split the same class samples to a set of subclasses to

lower the MSV value.

3) It is worthwhile to carry out comparative study between one-dimensional

and two-dimensional based LDA methods. In this paper, the three LDA based

38



methods all treat image samples as one-dimensional vectors. Recently, re-

searchers have proposed an important category of LDA based methods that

treat image samples as their native two-dimensional matrices to solve the SSS

problem, e.g., the two-dimensional LDA method [33] and the framework of

2D Fisher Discriminant Analysis method [11]. Therefore, it is important to

compare the one-dimensional based LDA methods and the two-dimensional

based LDA methods both theoretically and experimentally.

4) The pattern recognition community has recently witnessed quite a few ex-

tensions on subspace analysis methods for the SSS problem, e.g., improved

discriminate analysis [35], subspace evolution analysis [32], generalized null

space uncorrelated Fisher discriminant analysis [24], generalized discriminant

analysis [9], relevance weighted LDA [29], uncorrelated heteroscedastic LDA

[23], etc. Although these methods have achieved successes, we think it nec-

essary to conduct in-depth comparative studies to explore when and why a

given method is better for classification, which is beneficial for practitioners

to select appropriate methods in real applications. Moreover, in [16], we have

shown that it is beneficial for classification by employing an intermediate rep-

resentation before performing subspace analysis. Therefore, when developing

new subspace analysis methods, attention should also be paid to the prepro-

cessing of sample patterns.
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