
1

MultiK-MHKS: A Novel Multiple Kernel Learning
Algorithm

Zhe Wang, Songcan Chen∗, Tingkai Sun

Abstract— In this paper, we develop a new effective multiple
kernel learning algorithm. First, we map the input data into m
different feature spaces by m empirical kernels, where each gen-
erated feature space is taken as one view of the input space. Then
through borrowing the motivating argument from Canonical
Correlation Analysis (CCA) that can maximally correlate the m
views in the transformed coordinates, we introduce a special term
called Inter-Function Similarity Loss RIFSL into the existing
regularization framework so as to guarantee the agreement of
multi-view outputs. In implementation, we select the Modification
of Ho-Kashyap algorithm with Squared approximation of the
misclassification errors (MHKS) as the incorporated paradigm,
and the experimental results on benchmark datasets demonstrate
the feasibility and effectiveness of the proposed algorithm named
MultiK-MHKS.

Index Terms— Multiple kernel learning; Canonical correlation
analysis; Regularization Learning; Modified Ho-Kashyap algo-
rithm; Single learning process; Pattern recognition.

I. INTRODUCTION

Kernel-based learning algorithms [22], [26], [30] work
through mapping the input data X into a feature space F ,
Φ : X → F , where the mapping Φ is represented by
introducing a kernel. In practice, the types and the parameters
of the kernels must be selected. In the literature, such a
selection is often considered as the open problem of ”model
selection”. For a given application, there may be multiple
kernels as the candidates which can possess different types and
parameters. The kernel selected from the candidates can yield
a model with good performance. Such a selection, equivalently
to model selection, can usually be achieved by some methods
of optimizing kernels such as Cross Validation (CV) or Leave-
One-Out (LOO) [4], [21]. However, these methods are com-
putationally expensive when dealing with a large number of
kernel types or parameters. Even the kernel selected by these
optimization methods also can not be guaranteed optimal in
some cases. Further, since the selected kernel is single and
fixed, it can only characterize the geometrical structure of
some aspects for the input data and thus not always be fit for
the applications which involve multiple, heterogeneous data
sources [27].

Recently, a so-called Multiple Kernel Learning (MKL)
method [3], [7], [10], [14], [15], [23] have shown the necessity
to consider multiple kernels, or the combination of kernels

∗Corresponding author. Email: s.chen@nuaa.edu.cn
Zhe Wang and Songcan Chen are with Department of Computer Science

& Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing,
210016, P.R. China. Tingkai Sun is with College of Computer Science and
Technology, Nanjing University of Science and Technology, 210094, P.R.
China.

rather than a single fixed kernel. Generally, MKL tries to form
an ensemble of kernels so as to be fit for a certain application.
It has been proved that MKL can offer some needed flexibility
and well manipulate the case that involves multiple, hetero-
geneous data sources [1], [27], [2]. Since MKL considers
multiple kernels, it can be effectively employed for the hetero-
geneous data sources under the common framework of kernel
learning. To a certain extent, MKL also relaxes the model
selection about kernels. Lanckriet et al. [15] constructed a
convex Quadratically Constrained Quadratic Program (QCQP)
by the conic combinations of multiple kernels K =

∑
i fiiKi

from a library of candidate kernels Ki, and showed that their
method can combine multiple possible heterogeneous data
sources and moreover emphasize those most useful sources
in a given application, such as the genomic data fusion [14].
Then in order to extend Lanckriet et al.’s method to large scale
problems, Bach et al. [1] took the dual formulation of QCQP
as a Second-Order Cone Programming (SOCP) problem, and
Sonnenburg et al. [27], [28] reconstructed QCQP as a semi-
infinite linear program that recycles the standard Support
Vector Machine (SVM) implementations [30]. On the other
hand, Bennett et al. [2] and Bi et al. [3] respectively utilized
a boosting approach to achieve the combinations of kernels,
and showed that such a combination can incorporate and
potentially extract domain knowledge from the heterogeneous
sources. Further, de Diego et al. [7], [8], [20] built a kernel
matrix from a collection of kernels through quantifying the
difference of information among the kernels and their methods
have been successfully evaluated for classification.

In this paper, we continue the study on MKL. Different from
the existing MKL algorithms which mainly consider the con-
vex combination of multiple kernels, we borrow an argument
from Canonical Correlation Analysis (CCA) to develop a new
MKL method, whose underlying motivations and contributions
are:
• With m kernels, a given input data can be mapped into

m feature spaces, where each feature space can be taken as
one view of the original input data. Each view is expected
to exhibit some geometrical structures of the original data
from its own perspective such that all the m views can
complement for the subsequent learning task. How to embed
such a complementarity into one learning process becomes our
aim.

CCA [12] is generally adopted to evaluate the linear correla-
tions between two sets of multi-dimensional variables. It works
by finding two basis vectors for two sets of variables such that
the correlation between the projections of the variables onto
their corresponding basis vectors is mutually maximized. For a

Digital Object Indentifier 10.1109/TPAMI.2007.70786 0162-8828/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

given application involved two views which both contain the
common information, but individually represent in different
and specific sets of features, CCA is expected to denoise the
individual views and give the common relevant information
[9], which is why CCA as a preprocessing step can improve the
performance of the subsequent classification algorithm [17].
Thus, considering the characteristic of CCA, we try to exploit
CCA so as to embed the complementarity provided by the
m views of the input data into one single learning process.
However, CCA [12] itself is only fit for two sets of variables
and the m here is more than two. Moreover, the generalization
of CCA [11] for more than two sets of variables usually
leads to a relatively high complexity in seeking its solution
since it employs the way by maximizing all the correlations
between the projections of the pairwise views, or equivalently,
minimizing the objective function

∑m
k,l=1;k 6=l ‖S(k)W (k) −

S(l)W (l)‖2F 1 that contains m(m−1)
2 terms. It is a complexity

that urges us to simplify the formulation so as to form a new
CCA called NmCCA. NmCCA makes the projection of each
view onto their corresponding basis vectors maximally close
to the average projection of all the views, i.e. minimizing the
objective function

∑m
k=1 ‖S(k)W (k) − 1

m

∑m
l=1 S(l)W (l)‖2F

that not only reduces the number of the terms in the ob-
jective function from m(m−1)

2 [11] to m but also satisfies
the inequality

∑m
k=1 ‖S(k)W (k) − 1

m

∑m
l=1 S(l)W (l)‖2F ≤∑m

k,l=1;k 6=l ‖S(k)W (k) − S(l)W (l)‖2F 2.
• In practice, instead of the general Implicit Kernel Mapping

(IKM) [22], [26] in kernel-based methods, we adopt Empirical
Kernel Mapping (EKM) [25], [31] that explicitly maps the
input data into m different feature spaces (also called m views)
by the given m kernels, and then exploit NmCCA to embed
the complementarity provided by the m views into a new
regularization learning that is expected to effectively improve
the generalization of classifiers. The classical regularization
framework as an effective and popular method for boosting
generalization [5], [16], [30] attempts to obtain the classifier
f by minimizing the following function

R(f) = Remp(f) + cRreg(f); (1)

where Remp(f) is the empirical risk term, Rreg(f) represents
the regularization term that penalizes the roughness or smooth-
ness of f [5], and c ≥ 0 is a regularization parameter that
controls the trade-off between Remp(f) and Rreg(f). Then,

1The input data {xi}N
i=1 ⊂ Rd can be explicitly mapped into m feature

spaces with m kernels (see Section II.B). Then define the mapped data
in each view as {Φe

l (xi)}N
i=1 ⊂ Rnl , l = 1...m, where nl is the

dimensionality of each feature space. By S(l) = [ΦeT
l (x1); ...; ΦeT

l (xN)] ∈
RN×nl , l = 1...m, we can get the m views of the input data
{xi}N

i=1 in matrix form {S(1), ..., S(m)}. The transformation matrices
W (l) ∈ Rnl×q , l = 1...m are wanted such that the correlations be-
tween all the pairwise views S(k) and S(l) are mutually maximized,
i.e. maximizing

Pm
k,l=1;k 6=l Tr(W (k)T S(k)T S(l)W (l)), where q is the

dimensionality of each view after transformation. Further, maximizingPm
k,l=1;k 6=l Tr(W (k)T S(k)T S(l)W (l)) can be transformed into a distance

minimization problem min
Pm

k,l=1;k 6=l ‖S(k)W (k) − S(l)W (l)‖2F . If un-
folding the latter objective, both the optimization are equivalent and can be
solved by singular value decomposition [11].

2The inequality can be easily proven by the algebra that the objective
function

Pm
i=1 si ‖ xi − a ‖2 with the variable a has a unique minimizer

a =
Pm

i=1 sixiPm
i=1 si

. In this case, si = 1.

with NmCCA that makes the projection of each view onto their
corresponding basis vectors maximally close to the average
projection of all the views, i.e. minimizing

∑m
k=1 ‖S(k)W (k)−

1
m

∑m
l=1 S(l)W (l)‖2F , as a result, we construct a new term

called Inter-Function Similarity Loss RIFSL and introduce
it into R(f) with the purpose to make all the given m
classifiers fl corresponding to the m views of the common
labels achieve as much agreement on their outputs as possible.
Consequently, we obtain the final decision function F defined
as F = 1

m

∑m
l=1 fl by minimizing the objective function added

the new term as follows

R(F) =
m∑

l=1

[Remp(fl) + clRreg(fl)] + ‚RIFSL(F); (2)

where RIFSL(F) =
∑m

l=1(fl − 1
m

∑m
j=1 fj)2 plays a role of

the agreement penalization on the outputs of multiple fl, and
‚ ≥ 0 is a factor controlling the trade-off between RIFSL(F)
and R(fl).
• The base classifier fl of (2) in fact can be any one

coincidental to the learning framework (1). In learning, we
focus on the Modification of Ho-Kashyap algorithm with
Squared approximation of the misclassification errors (MHKS)
proposed by Łeski [16] as the base paradigm fl mainly due
to: 1) MHKS falls into the regularization framework (1); 2)
MHKS employs a modification of the gradient descent with
a heuristic update-rule and thus it is relatively simple for
obtaining the minimizer to the objective function (2); 3) the
experiments in Section III have validated that the proposed
MKL algorithm MultiK-MHKS in the framework (2) can
achieve the convergence within a few training iterations.
• Finally, we should state that from the angle of RIFSL(F),

it seems not directly to relate NmCCA. Though RIFSL(F)
itself indeed can make the outputs of multiple fl achieve as
much agreement as possible so as to reduce the output variance
of the model, in fact, RIFSL(F) is exactly induced through
borrowing a motivating argument from NmCCA. NmCCA not
only guarantees to correlate among multiple views, but also is
an interesting byproduct with a relatively simpler formulation
than CCA [11]. Thus NmCCA deserves a separate extended
study in future.

The rest of this paper is organized as follows. In Section
II, we give the description of the implemental algorithm
named MultiK-MHKS in the proposed learning framework
(2). In Section III, the experimental results on some bench-
mark datasets have shown the feasibility and effectiveness of
MultiK-MHKS. Finally, both conclusion and future work are
given in Section IV.

II. FUSION OF NMCCA INTO REGULARIZATION

LEARNING

This section discusses how to introduce the spirit of Nm-
CCA into the regularization learning framework (1) with m
kernels. In order to theoretically demonstrate the feasibility of
our idea, we select the Modification of Ho-Kashyap algorithm
with Squared approximation of the misclassification errors
(MHKS) [16] as the learning incorporated paradigm, and then
develop a new MKL algorithm named MultiK-MHKS.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

A. MHKS Algorithm

Suppose that there are N labeled training samples
{(xi; ’i)}N

i=1 available, where xi ∈ Rd and its corresponding
class label ’i ∈ {+1;−1}. In MHKS [16], the decision
function

g(xi) = !̃T xi + !0; (3)

is obtained by optimizing the criterion

min
ω∈Rd+1,bN×1≥0

I = (Y ! − 1N×1 − bN×1)T (Y ! − 1N×1

−bN×1) + c!̃T !̃;
(4)

where !̃ ∈ Rd; !0 ∈ R in (3) are the weight vector and the
bias respectively, the augmented weight vector ! = [!̃T ; !0]

T ,
the matrix Y is defined as Y = [’1(x1

T ; 1); :::; ’N (xN
T ; 1)],

1N×1 represents the vector of N dimension with all entries
equal to 1 and bN×1 represents the vector with all entries
equal to nonnegative values, the scalar c ≥ 0 ∈ R. In (4), the
terms (Y !−1N×1−bN×1)T (Y !−1N×1−bN×1) and !̃T !̃
correspond to Remp(f) and Rreg(f) of (1) respectively, and
the c is the regularization parameter. The elaborate description
about MHKS can be found in [16].

B. Proposed MultiK-MHKS algorithm

In our method, given N training samples {(xi; ’i)}N
i=1 with

m kernels, we can map each sample xi, i.e. Φl : X → Fnl

l ; l =
1:::m by different kernels from the input space into the m
corresponding feature spaces {Fnl

l }m
l=1, each of which has

nl dimension. The aim of our method is to work by fully
considering all the m feature spaces.

Traditionally, the mapping Φ is implicitly represented by
specifying a kernel function as the inner product between each
pair of samples in the feature space [22], [26]. For the sample
set {xi}N

i=1, X denotes the N × d sample matrix where each
row is the vector xT

i , and K = [kerij]N×N denotes the N×N
kernel matrix where kerij = Φ(xi) · Φ(xj) = ker(xi; xj).
K is a symmetrical positive-semidefinite matrix. Conversely,
the mapping Φ in this paper, is given in an explicit form as
describe in [31]. If the rank of K is r, the kernel matrix K
can be decomposed as

KN×N = QN×rΛr×rQT
r×N ; (5)

where Λ is a diagonal matrix consisting of the r positive
eigenvalues of K, and Q consists of the corresponding or-
thonormal eigenvectors. Thus, the explicit mapping also called
the Empirical Kernel Mapping (EKM) in [25], [31], is given
as Φe : X → Fr

x → Λ−1/2QT [ker(x; x1); :::; ker(x; xN)]T : (6)

Let B = KQΛ−1/2, and then the dot product matrix of
{Φe(xi)}N

i=1 generated by EKM can be calculated as

BBT = KQΛ−1/2Λ−1/2QT K = K: (7)

That is exactly equal to the kernel matrix in the Implicit Kernel
Mapping (IKM), and thus the mapped samples respectively
generated by EKM and IKM have the same geometrical
structure. In [25], [31], it is shown that comparing EKM with

IKM, the former is easier to access and easier to study the
adaptability of a kernel to the input space than the latter. That
is why we select EKM here.

In the MKL problem here, the set of sam-
ples {xi}N

i=1 is explicitly mapped into the set
{(Φe

1(xi); :::; Φe
l (xi); :::; Φe

m(xi))}N
i=1, where each Φe

l ,
also called one view of the original input space, corresponds
to one kernel. Then through borrowing the motivating
argument from NmCCA that makes the projection of each
view maximally close to the average projection of all the
views, we give the fusion of NmCCA with MHKS in the
framework (2). Concretely, MHKS is carried out in each
view, and meanwhile all the MHKSs are fused into one
single process by the spirit of NmCCA. Thus, we can get the
following optimization problem:

min
ωl∈Rnl+1,bl≥0;

l=1...m

L =
m∑

l=1

[(Yl!l − 1N×1 − bl)T (Yl!l − 1N×1 − bl)

+cl!̃
T
l !̃l] + ‚

m∑
l=1

(Yl!l − 1
m

m∑
j=1

Yj!j)T (Yl!l − 1
m

m∑
j=1

Yj!j);

(8)
where Yl; !l; !̃l; bl correspond to one MHKS in one view that
is determined by the corresponding {(Φe

l (xi); ’i)}N
i=1. In the

right hand side of equation (8), the first term corresponds to the
principle of MHKSs in m views. Minimizing the second term
characterizes that the outputs of each view {(Φe

l (xi); ’i)}N
i=1

onto their corresponding weight vector !l are constrained to
be maximally close to the average outputs of all the views,
which is induced from NmCCA.

In the framework (2), we have given the final decision
function F defined as F = 1

m

∑m
l=1 fl. Here, the !l; l = 1:::m

need to be solved by minimizing the objective function (8). It
can be found that the optimization problem (8) with respect to
the single !l is convex [6] while !j ; j 6= l is fixed. Thus we
solve !l in a sequence l = 1:::m, and employ a modification
of the gradient descent with a heuristic update-rule for each
!l. Now making the gradient of L with respect to !l be zero,
we can obtain

!l = [(1+‚
m− 1

m
)Y T

l Yl+clĨ]−1Y T
l (bl+1N×1+‚

1
m

m∑

j=1;j 6=l

Yj!j);

(9)
where Ĩ is a diagonal matrix with full 1s except the last
element set to zero.

In the lth view, it can be noted that !l depends on bl from
equation (9). Then by differentiating L with respect to bl and
setting the result equal to zero, we can get

el = Yl!l − bl − 1N×1 = 0: (10)

From equation (10), the components of bl determine the
distance from samples to the separating hyperplane, and thus
play a similar role to the relaxation variables in SVM [30]. In
order to guarantee that the samples are correctly classified in
the lth view, the components of bl need to be nonnegative.
Thus, we employ the iterative algorithm for determining !l

and bl analogously to [16]. First, with bk
l representing the

vector bl at the kth iteration, we initialize b1
l ≥ 0, then keep

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Table 1 Algorithm MultiK-MHKS
Input: {xi, ϕi}N

i=1; the m candidate kernels {kerl(xi, xj)}m
l=1

OutPut: the weight vectors ωl, l = 1...m

1. Explicitly map {xi}N
i=1 into {Φe

1(xi), ..., Φ
e
l (xi), ..., Φ

e
m(xi)}N

i=1 by m kernels as shown in (6).

2. For each view, Yl = [ϕ1(Φe
l

T (x1), 1); ...; ϕN (Φe
l

T (xN), 1)], l = 1...m.

3. Initialize ξ > 0, ρl > 0, cl ≥ 0, b1
l ≥ 0, l = 1...m and ω1

l , l = 2...m; set the iteration index k = 1.

4. ωk
l = ((1 + λ m−1

m
)Y T

l Yl + clĨ)−1Y T
l (bk

l + 1N×1 + λ 1
m

Pm
j=1;j 6=l Yjωk

j), l = 1.

5. ek
l = Ylω

k
l − bk

l − 1N×1, l = 1...m.

6. bk+1
l = bk

l + ρl(ek
l + |ek

l |), l = 1...m.

7. ωk+1
l = ((1 + λ m−1

m
)Y T

l Yl + clĨ)−1Y T
l (bk+1

l + 1N×1 + λ 1
m

Pm
j=1;j 6=l Yjωk

j), l = 1...m,

if ‖Lk+1 − Lk‖2 > ξ, then k = k + 1, go to Step 5; else stop.

bk
l ≥ 0 at each iteration k, and thus obtain

{
b1

l ≥ 0
bk+1

l = bk
l + ‰l(ek

l + |ek
l |)

; (11)

where at the kth iteration, the error vector of the lth view ek
l

is defined as ek
l = Yl!

k
l − bk

l − 1N×1, and the learning rate
of the lth view ‰l > 0. Then !k+1

l can be given by equation
(9). In practice, the termination criterion can be designed as
‖Lk+1 − Lk‖2 ≤ ». The designed procedure is termed as
MultiK-MHKS and summarized in Table 1.

Using the obtained weight vector !l; l = 1:::m, we can give
the decision function of MultiK-MHKS for the input patten z
with its corresponding mapped patterns {Φe

l (z)}m
l=1:

F (z) =
1
m

m∑

l=1

!T
l [Φe

l
T (z); 1]T

{
> 0 ; then z ∈ class + 1
< 0 ; then z ∈ class− 1 :

(12)
Further it can be found that in Algorithm MultiK-MHKS,

the update of !k+1
l is determined by !k

j ; j = 1:::m; j 6= l as
shown in (9), which reflects that these views cooperate each
other. Moreover, if m = 1; ‚ = 0 of (8), MultiK-MHKS is
degenerated to MHKS and so MHKS is the special instance
of MultiK-MHKS. Finally, it should be stated that compared
with IKM, EKM loses the sparsity [22] and thus our method
also inherits the non-sparsity induced from EKM. We plan to
address it completely in future work.

III. EXPERIMENTS

In our experiments, the candidate kernels are linear ker-
nel ker(xi; xj) = xT

i xj , RBF kernel ker(xi; xj) =
exp(−‖xi−xj‖22

2σ2) where ¾ is set to the average value of all
the l2-norm distances ‖xi − xj‖2; i; j = 1:::N as used in
[29], and polynomial kernel ker(xi; xj) = (xT

i xj + 1)d

where d is set to 2, respectively. Thus, the number of the
generated views m is set to 3 in all the experiments. For
MultiK-MHKS, the margin vector bl is initialized to 10−6;
the » in the termination criterions is fixed to 10−3; the
parameter ‰ is set to 0.99; and the !l; l = 2:::m are initialized
to one unit vector respectively. For MHKS, the b; »; ‰ are
initialized by the same setting as MultiK-MHKS. Both the
regularization parameter c and ‚ in MHKS and MultiK-
MHKS, are selected from the set {2−4; 2−3; :::; 23; 24}.
Benchmark datasets used here are Soybean (35 Attributes/4

0.0625 1 2 4 8 16
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

lambda

A
cc

ur
ac

ie
s

Wine
Diabetes
Sonar
Water
Soybean

Fig. 1. Cross-validation (10-fold) accuracies on Wine, Diabetes, Sonar, Water,

and Soybean as a function of parameter λ for MultiK-MHKS

Classes/47 Samples), Balance (4/3/625), Water (38/2/116),
Sonar (60/2/208), Wdbc (30/2/569), Diabetes (8/2/768), Iris
(4/3/150), Wine (12/3/178), Letters (16/26/20000), and Seg-
mentation (19/7/2310, denoted as ”Segment.” for short on
Table 2 and 3) respectively, which are obtained from http :
==www:ics:uci:edu= mlearn=MLRepository:html. Mean-
while, ORL face database (28×23/40/400) available at http :
==www:cam − orl:co:uk is also used. The one-against-one
classification strategy [13] is adopted for multi-class problems.

A. Influence of Parameter ‚ on MultiK-MHKS’s Performance
Compared with MHKS on the single kernel, MultiK-MHKS

introduces one additional parameter ‚ as shown in (8). In
order to show the influence of ‚ on classification, we give the
cross-validation (10-fold) accuracies on the validation set as a
function of ‚ on Wine, Diabetes, Sonar, Water, and Soybean
as shown in Figure 1. From the figure, it can be found that the
choice of ‚ plays an important role in terms of the accuracy.
The similar phenomenon can also be obtained on the other
datasets used. Consequently, in the following experiments, we
give the classification performance based on the optimal ‚ by
the Cross Validation.

B. Classification Performance Comparison
In order to demonstrate the effectiveness of the proposed

algorithm, MHKS algorithm based on the single kernel

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Fig. 2. (a) CCA+MHKS1 combined in the feature level; (b) CCA+MHKS2 combined in the decision level.

and two kinds of combination (denoted as CCA+MHKS1

and CCA+MHKS2 respectively) are carried out, where all
the candidate kernels (linear, RBF, polynomial) are used.
CCA+MHKS1 shown in Fig.2.(a) means that the m trans-
formed feature vectors will be concatenated into one ensemble
vector, and then MHKS will be implemented with such an
ensemble vector. CCA+MHKS2 shown in Fig.2.(b) means
that m MHKS algorithms are separately carried out in the
m feature spaces respectively, and then combined by the
majority voting technique. In addition, the other two MKL
algorithms denoted as MKL [27] and SVM-2K [9] respectively
are both compared with our method. Since SVM-2K only
can deal with two kernels in one learning process, we give
the best accuracy corresponding to the optimal combination
from the 3 candidate kernels for all the datasets. Finally, we
also give the best performance of the state-of-the-art SVM on
the single kernel (SVM1) and the long feature-vector obtained
from concatenating all the single feature-space representations
(SVM2) similar to CCA+MHKS1. Each of all the used datasets
is divided into the two no-overlapping parts with the one for
training and the other one for testing. Then, for each such
classification problem, 10 independent runs are performed and
their classification accuracies on the test sets are averaged and
reported in Table 2, where for the different algorithms, the
best, second best, third best results are boldface, italic and
underlined respectively. From Table 2, it can be found that
there is a clear improvement in the classification performance
of MultiK-MHKS over MHKS based on the single kernel and
the two kinds of CCA+MHKS. Compared with MKL[27] and
SVM-2K[9], MultiK-MHKS also has a comparable or superior
performance here. On the whole, on all the used datasets only
except Diabetes, MultiK-MHKS gets the first or second place.
Even on the Diabetes, MultiK-MHKS also has the comparable
performance to the best method SVM1 (only less by 0.06%).

For further finding out whether the proposed MultiK-MHKS
is significantly better than the other compared algorithms
in Table 2, we implement t-test [19] on the classification
results of the 10 runs to calculate the statistical significance
of MultiK-MHKS. The null hypothesis H0 demonstrates that
there is no significant difference between the mean number of
samples correctly classified by MultiK-MHKS and the other
compared algorithms here. The t-test values are also listed in

Table 2, from which we can clearly find that the hypothesis
H0 is rejected at the 5% significance level, i.e. the t-test value
≥ 1:7341 on MHKS, CCA+MHKS1 and CCA+MHKS2 in
almost all the used datasets. That means that the proposed
fusion of CCA with MHKS in one single learning process
possesses significantly superior classification performance to
the combinations (CCA+MHKS1 and CCA+MHKS2) and
MHKS, which exactly validates the effectiveness of our
method. Meanwhile, compared with the other MKL algorithms
(MKL[27], SVM-2K[9]) and SVM, MultiK-MHKS also shows
a comparable or superior performance in statistics.

C. Running Time Comparison

In this section, the training time of MultiK-MHKS and the
compared algorithms (CCA+MHKS1, CCA+MHKS2, MHKS,
MKL[27], SVM-2K[9], SVM1 and SVM2) with their optimal
parameters in 10 runs is reported in Table 3. All the com-
putations are performed on Pentium IV 2.80 GHz processor
running Windows 2000 Terminal and MATLAB environment.
From Table 3, although MultiK-MHKS has longer running
time than MHKS on most of the datasets due to multiple
kernels used, our method has shorter running time with respect
to the separate processes: CCA+MHKS1 and CCA+MHKS2

on most cases, especially on Letters. Further, compared with
the other algorithms except MKL[27], it can also be noted that
MultiK-MHKS has the competitive efficiency in computation.

D. Convergence Analysis

In this section, we give a discussion on the convergence of
the proposed MultiK-MHKS. The previous section has stated
that the optimization problem (8) with respect to a single !l is
convex. But the designed algorithm shown in Table 1 employs
a modification of the gradient descent for each !l; l = 1:::m.
Thus it supposes that the sequential !l differs slightly near
the optimum solution [16]. Here, due to some theoretical
difficulties in proving convergence, we adopt an empirical
justification as used in [32] to demonstrate that MultiK-MHKS
can converge in the limited iterations. Figure 3 shows the
natural logarithm value of the objective function (8) changes
with the iteration number of MultiK-MHKS respectively on
the binary-class datasets: Diabetes, Sonar, the 2nd vs. 3rd

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Table 2 Classification performance (%) and the t-test comparison between MultiK-MHKS, CCA+MHKS, MHKS, MKL[27], SVM-2K[9], SVM1 on the
single kernel and SVM2 on the long feature-vector obtained from concatenating all single feature-space representations. (Note: In ”A(B)”, ”A” denotes the
classification accuracy and ”B” assesses whether the classification performance of the corresponding algorithm is statistically different from that of MultiK-
MHKS. ”B∗” represents that the difference between the two algorithms is not significant at 5% significance level, i.e. B∗ < 1.7341. For different algorithms,
the best, second best, third best results are boldface, italic and underlined respectively.)

Datasets MultiK-

MHKS

CCA+MHKS1 CCA+MHKS2 MHKS MKL[27] SVM-2K[9] SVM1 SVM2

Soybean 99.57 90.00(5.3906) 88.26(4.5810) 96.52(2.2778) 97.83(2.0580) 97.83(1.3950∗) 98.70(1.0954∗) 99.57(0∗)

Balance 93.94 87.88(10.6106) 87.88(10.6106) 90.16(6.8245) 90.19(6.5939) 88.85(9.8502) 91.09(3.7080) 88.65(7.2257)

Water 96.21 57.27(19.2638) 63.79(24.3671) 94.85(1.4443∗) 93.03(2.6877) 60.61(51.8327) 95.45(0.7111∗) 95.61(0.5009∗)

Sonar 80.65 72.78(6.8811) 72.78(6.8811) 75.83(4.4371) 75.28(2.3520) 71.67(6.9503) 79.63(0.8278∗) 80.00(0.5399∗)

Wdbc 63.89 63.48(1.0855∗) 62.96(2.5204) 62.48(2.7287) 50.81(9.8425) 62.96(2.5210) 62.96(2.5210) 52.19(12.0261)

Diabetes 71.40 70.83(3.0534) 70.20(2.9210) 69.54(2.5185) 71.43(1.0000∗) 71.43(1.0000∗) 71.46(0.7878∗) 54.17(10.6573)

Iris 97.33 92.67(6.2163) 90.53(8.9938) 97.33(0∗) 97.33(0∗) 97.20(0.1706∗) 97.20(0.1765∗) 97.47(0.1829∗)

Wine 96.89 89.81(4.8455) 93.02(3.8432) 95.19(2.6056) 79.15(3.8048) 70.38(7.6811) 93.40(3.9220) 93.02(3.8419)

Letters 84.46 83.81(6.6020) 81.69(27.3007) 82.97(17.5195) 63.35(70.9851) 77.59(14.9665) 68.35(55.8505) 46.80(100.7056)

Segment. 88.05 86.73(0.5765∗) 86.68(0.616∗) 84.49(1.7697) 66.54(10.9667) 77.29(5.9461) 73.61(6.9737) 71.02(7.6047)

ORL 94.80 37.50(72.5762) 87.65(5.4816) 91.25(3.6481) 94.80(0∗) 93.55(1.3992∗) 94.85(0.0633∗) 94.75(0.0635∗)

Table 3 Training time (in s) comparison between MultiK-MHKS, CCA+MHKS, MHKS, MKL[27], SVM-2K[9], SVM1 on the single kernel and SVM2 on
the long feature-vector obtained from concatenating all single feature-space representations.

Datasets MultiK-MHKS CCA+MHKS1 CCA+MHKS2 MHKS MKL[27] SVM-2K[9] SVM1 SVM2

Soybean 0.09 0.27 0.19 0.02 483.50 0.09 2.76 1.19

Balance 97.50 26.17 26.69 150.15 1072.69 15.09 7.99 5.11

Water 0.41 4.67 2.91 0.07 98.43 0.08 0.79 0.29

Sonar 2.39 8.69 8.07 0.14 136.46 0.76 0.94 0.34

Wdbc 1.21 60.56 68.45 0.36 439.45 2.01 1.81 3.97

Diabetes 26.16 149.14 156.71 0.01 560.29 1.15 7.28 9.11

Iris 0.73 0.28 0.26 0.13 198.01 2.19 1.84 0.73

Wine 0.75 1.21 0.46 0.09 185.67 1.58 0.81 2.23

Letters 15902 23739 23704 24038 23399 40387 493 12038

Segment. 19.76 26.66 24.13 9.97 970.03 103.77 2.23 15.18

ORL 5.74 4.49 8.10 1.85 3894.20 31.10 11.18 13.70

1 5 10 15 20 25 30
2

3

4

5

6

7

8

9

Number of iterations

lo
g

of
 th

e
ob

je
tiv

e
fu

nc
tio

n
(8

) v
al

ue

Diabetes
Sonar
Iris_2vs3
Water
Wdbc

Fig. 3. Convergence of MultiK-MHKS on the natural logarithm value of the

objective function (8)

classes of Iris, Water, and Wdbc. From the figure, it can
be found that the optimization target (8) on these datasets
can obviously converge to stable values, where less than ten
iterations are usually enough to achieve convergence.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel MKL algorithm. Different
from the existing MKL algorithms which mainly work by the
convex combination of multiple kernels, the new algorithm
adopts the spirit of CCA to fuse multiple views generated
by multiple kernels into one single learning process such
that one given algorithm in all the views can agree as much
as possible on the outputs. In practice, by borrowing the
motivating argument from NmCCA that is a new formulation
for CCA in multi-view case, we introduce an additional
term called Inter-Function Similarity Loss RIFSL into the
regularization learning. Then, with the fusion of RIFSL and
the original MHKS algorithm, a new MKL algorithm named
MultiK-MHKS is developed. The experiments here illustrate
that MultiK-MHKS is feasible and effective.

Motivated by the fact that the kernelization of CCA as
a preprocessing step can improve the subsequent classifica-
tion performance, Farquhar et al. [9] proposed the SVM-
2K algorithm that combines the two stage learning (KCCA
followed by SVM) into one single optimization. The main
differences between our method and SVM-2K lie in: 1) that
our method adopts EKM and SVM-2K employs IKM. It has
been proved that EKM in the current presentation (6) has the
same geometrical structure as IKM. But our method is more

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

general because EKM defined as (6) can naturally be replaced
with a general proximity relation mapping [24], which need
neither be Mercer kernels nor be limited to only one feature
space; 2) given the data with m views, SVM-2K can only
manipulate two views, but our method can deal with more
than two views. Thus SVM-2K can be regarded as a special
case of our method if SVM is selected as the base paradigm
instead of MHKS in (2); 3) MultiK-MHKS has a comparable
or superior classification performance to SVM-2K as validated
in the experiments. However, due to EKM used here, our
method also inherits the non-sparsity induced from EKM,
which results in a bad scale with the size of datasets.

In future, we plan to: 1) make a separate study of the
byproduct NmCCA derived here; 2) choose a subset of the full
training data to define an approximate EKM in (6) for reducing
the computation analogous to the work [18]; 3) generalize
RIFSL into SVM in the proposed framework (2) for a deeper
study.

ACKNOWLEDGMENT

The authors thank the editor and the anonymous referees for
their valuable comments, thank J.D.R. Farquhar and S. Szed-
mak for kindly providing the codes of SVM-2K, and Natural
Science Foundations of China under Grant No.60773061 for
supports.

REFERENCES

[1] F. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning,

conic duality, and the SMO algorithm. In Proceedings of the 21st

International Conference on Machine Learning, 2004.

[2] K.P. Bennett, M. Momma, and M.J. Embrechts. MARK: A boosting

algorithm for heterogeneous kernel models. In SIGKDD, pages 24–31,

2002.

[3] J. Bi, T. Zhang, and K. Bennett. Column-generation boosting methods

for mixture of kernels. In KDD, pages 521–526, 2004.

[4] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing

multiple parameters for support vector machines. Machine Learning,

46(1-3):131–159, 2002.

[5] Z. Chen and S. Haykin. On different facets of regularization theory.

Neural Computation, 14(12):1481–1497, 2002.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector

Machines and other kernel-based learning methods. Cambridge Univer-

sity Press, 2000.

[7] I.M. de Diego, J.M. Moguerza, and A. Muñoz. Combining kernel

information for support vector classification. In MCS, LNCS, pages

102–111, 2004.

[8] I.M. de Diego, J.M. Moguerza, and A. Muñoz. On the fusion of

polynomial kernels for support vector classifiers. In IDEAL, LNCS,

pages 330–337, 2006.

[9] J.D.R. Farquhar, D.R. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szed-

mak. Two view learning: SVM-2K, theory and practice. In Neural

Information Processing Systems, 2005.

[10] Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in

SVMs. In Neural Information Processing Systems, 2002.

[11] D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation

analysis: An overview with application to learning methods. Neural

Computation, 16:2639–2664, 2004.

[12] H. Hotelling. Relations between two sets of variates. Biometrika,

28:321–377, 1936.

[13] U. Kreβel. Pairwise classification and support vector machines. In:

B. Schölkopf, C. Burges, A. Somla (eds.) Advances in kernel methods:

support vector machine. MIT Press Cambridge, MA, pages 255–268,

1998.

[14] G.R.G. Lanckriet, T.D. Bie, N. Cristianini, M.I. Jordan, and W.S.

Noble. A statistical framework for genomic data fusion. Bioinformatics,

20(16):2626–2635, 2004.

[15] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I.

Jordan. Learning the kernel matrix with semidefinite programming.

Journal of Machine Learning Research, 5:27–72, 2004.

[16] J. Łeski. Ho-kashyap classifier with generalization control. Pattern

Recognition Letters, 24(14):2281–2290, 2003.

[17] Y. Li and J. Shawe-Taylor. Using KCCA for Japanese-English cross-

language information retrieval and classification. Journal of Intelligent

Information Systems, 2005.

[18] J. Ma. Function replacement vs. kernel trick. Neurocomputing, 50:479–

483, 2003.

[19] T.M. Mitchell. Machine Learning. Boston: McGraw-Hill, 1997.

[20] J.M. Moguerza, A. Muñoz, and I.M. de Diego. Fusion of gaussian

kernels within support vector classification. In CIARP, LNCS, pages

945–953, 2006.

[21] M. Momma and K. Bennett. A pattern search method for model

selection of support vector regression. In Proceedings of the Second

SIAM International Conference on Data Mining. SIAM, pages 261–274,

2002.

[22] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An

introduction to kernel-based learning algorithms. IEEE Transactions

On Neural Networks, 12(2):181–202, 2001.

[23] C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with

hyperkernels. Journal of Machine Learning Research, 6:1043–1071,

2005.

[24] E. Pekalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach

to dissimilarity-based classification. Journal of Machine Learning

Research, 2:175–211, 2001.

[25] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller,

G. Rätsch, and A.J. Smola. Input space versus feature space in kernel-

based methods. IEEE Transactions On Neural Networks, 10(5):1000–

1017, 1999.

[26] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.

[27] S. Sonnenburg, G. Rätsch, and C. Schäfer. A general and efficient

multiple kernel learning algorithm. In Neural Information Processing

Systems, 2005.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

[28] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale

multiple kernel learning. Journal of Machine Learning Research, 2006.

[29] I. Tsang, A. Kocsor, and J. Kwok. Efficient kernel feature extraction for

massive data sets. In International Conference on Knowledge Discovery

and Data Mining, 2006.

[30] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[31] H. Xiong, M.N.S. Swamy, and M.O. Ahmad. Optimizing the kernel in

the empirical feature space. IEEE Transactions On Neural Networks,

16(2):460–474, 2005.

[32] J. Ye. Generalized low rank approximation of matrices. Machine

Learning, 61(1-3):167–191, 2005.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

