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Abstract: Laplacian Linear Discriminant Analysis (LapLDA) and Semi-supervised Discriminant 

Analysis (SDA) are two recently proposed LDA methods. They are developed independently with 

the aim to improve LDA by introducing a locality preserving regularization term, and have been 

shown their effectiveness experimentally on some benchmark datasets. However, both algorithms 

ignored comparison with much simpler methods such as Regularized Discriminant Analysis 

(RDA). In this paper, we make an empirical and supplemental study on LapLDA and SDA, and 

get somewhat counterintuitive results: 1) Although LapLDA can generally improve the classical 

LDA via resorting to a complex regularization term, it does not outperform RDA which is only 

based on the simplest Tikhonov regularizer; 2) To reevaluate the performance of SDA, we develop 

purposely a new and much simpler semi-supervised algorithm called Globality Preserving 

Discriminant Analysis (GPDA) and make a comparison with SDA. Surprisingly, we find that 

GPDA tends to achieve better performance. These two points drive us to reconsider whether one 

should use or how to use locality preserving strategy in practice. Finally, we discuss the reasons 

which lead to the possible failure of the locality preserving criterion and provide alternative 

strategies and suggestions to address these problems. 

Key words: Linear Discriminant Analysis, Semi-supervised learning, Locality preserving 
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1 Introduction 

Linear Discriminant Analysis (LDA) is a popular supervised dimensionality reduction (DR) 

method. It seeks a set of optimal linear projections by simultaneously maximizing the 

between-class dissimilarity and minimizing the within-class dissimilarity. On one hand, LDA is 

simple, efficient and effective for many practical applications such as face recognition[1]; but on 

the other hand, it does suffer from some problems: 1) the so-called Small Sample Size (SSS) 

problem, where the training sample size is small compared with the high feature dimensions; 2) 

LDA is a completely global method, and thereby can not naturally capture the local geometry of 

the data. To deal with the first problem, many extended LDA algorithms, such as PseudoLDA[2], 

PCA+LDA[1], NullLDA[3], LDA/QR[4], RDA[5] and 2DLDA[6], have been developed in the 

past decade years. To deal with the second problem, a simple but feasible strategy is to incorporate 

a data-dependent regularization term into the original objective function of LDA, and the 

representative methods have Chen et al.’s Laplacian Linear Discriminant Analysis (LapLDA)[7] 

                                                        
* Corresponding author: Tel: +86-25-84896481 Ext. 12221; Fax: +86-25-84892400; E-mail: s.chen@nuaa.edu.cn 
(S. Chen) 



and Cai et al.’s Semi-supervised Discriminant Analysis (SDA)[8]. The former is supervised, while 

the latter is semi-supervised. But they share a nearly similar objective function which integrates 

Fisher criterion with a locality preserving regularizer and attempt to get the best of both worlds. In 

fact, in the recent years, many researchers have independently developed some similar DR 

methods such as Song et al.’s semi-supervised LDA (SSLDA)[9] which is actually equivalent to 

SDA. 

Undoubtedly, it is important and attractive to develop new and effective DR algorithms. 

However, on the other hand we believe that further comparative study on the existing methods is 

also quite valuable, since it may correct some misunderstanding for users, guide practitioners in 

choosing appropriate methods, and help to design better algorithms. In this paper, we make an 

empirical discussion on two recently proposed and relatively popular locality preserving LDA 

methods, i.e., the aforementioned LapLDA and SDA. All experiments are based on the same 

benchmark datasets which have been employed to verify their own effectiveness. The main 

insights and contributions of this paper include: 

1) According to [7], LapLDA can generally outperform LDA by introducing a locality 

preserving regularization term. However, our further experiments show that LapLDA does 

not outperform RDA, a regularized counterpart of the LDA, which is developed earlier and 

only resorts to much simpler Tikhonov regularizer. This indicates that the role of locality 

preserving term is not so important as [7] claimed, which drives us to reconsider its 

limitation or inappropriateness in characterizing the real geometric structure in data. 

2) SDA is designed especially for semi-supervised scenario and shares the similar locality 

preserving regularizer as in LapLDA. Also, the authors of [8] experimentally validated that 

their SDA benefits from such local regularization term and outperforms many 

state-of-the-art methods such as LapSVM. To reevaluate its performance, we develop 

purposely a new and much simpler semi-supervised algorithm called Globality Preserving 

Discriminant Analysis (GPDA) and make a comparison with SDA. Consequently, such a 

relatively simple algorithm tends to achieve better performance, even though only the 

global structure of the data is considered. 

3) Different from many existing studies [7-8, 10] which mainly focus on the advantages of 

locality preserving strategy, we discuss the reasons why the locality preserving algorithms 

may not work well. Moreover, motivated by the above insights, we provide some 

alternative strategies and suggestions to address this problem. 

The rest of this paper is organized as follows: Section 2 briefly introduces several regularization 

based LDA methods which are closely associated with our topic. In section 3, we empirically 

compare LapLDA and SDA with two simple baseline methods. In section 4, we make further 

discussion on the locality preserving strategy. Finally, we conclude the paper in section 5. 

2 Regularization based LDA methods 

In this section, we briefly introduce two locality preserving LDA methods (i.e., LapLDA and 



SDA), and two baseline methods including the existing RDA and a newly proposed GPDA which 

is designed just for revaluating the effectiveness of both LapLDA and SDA. All these methods are 

closely related to regularization technique which plays an important role in many popular machine 

learning algorithms such as SVM and LapSVM. 

2.1 Regularized Discriminant Analysis (RDA) 

It is well known that LDA seeks an optimal projection matrix by maximizing the following 

Fisher’s criterion: 
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where )(⋅tr  denotes the trace operator, bS  and tS  are respectively the between-class scatter 

matrix and the total scatter matrix. Here, we use the total scatter matrix tS instead of the 

within-class scatter matrix wS in the Fisher’s criterion to keep consistent with the form used in 

LapLDA and SDA. The optimal *W  are built by the eigenvectors corresponding to the 

eigen-problem: wwSS bt λ=−1 . 

Despite its simplicity and effectiveness, LDA does suffer from some limitations such as the SSS 

problem which leads to the singularity of tS  and thus the failure of classical LDA algorithm. As 

described previously, many methods [1-6] have been developed to attack this problem. Among 

others, RDA seems to be the simplest one, which overcomes the singularity problem in virtue of 

typical Tikhonov regularizer [11]. Its objective function is defined as follows: 
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where 0>α  is a trade-off parameter. As a result, its optimal projection matrix *W can be 

easily computed by wwSIS bt λα =+ −1)( , since ISt α+  is nonsingular now. 

2.2 Laplacian Linear Discriminant Analysis (LapLDA) 

As pointed out in [7], LDA is a completely global DR method, it thereby fails to capture the 

local structure in data. To handle this problem, Chen et al. developed the LapLDA which aims to 

capture the global and local structure of the given data simultaneously by integrating LDA with a 

locality preserving regularizer. Given a set of labeled training samples 1 2[ , , , ] m n
nX x x x R ×= ∈L  

including n  data points from m-dimensional space, LapLDA seeks an optimal projection matrix 
dmRW ×∈* ( md < ) by the following objective function [7]: 
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where Y  is a class indicator matrix defined in [12], F|||| ⋅  denotes Frobenius norm, α  is a 

trade-off parameter, L D S= −  is the graph Laplacian whose corresponding adjacency weight 
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As a result, minimizing ( )T Ttr W XLX W  essentially aims to preserve the local geometry in data. 

Here, we call it locality preserving regularizer. 

Note that LapLDA is proposed under a Least Square framework, it can also be easily recast as a 

trace ratio form under mild condition, according to the proved equivalence between multi-class 

LDA and multivariate linear regression [12]. For convenience of comparison and without loss of 

generality, we transform the objective function of LapLDA to the following form: 
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Similarly, the optimal projection matrix can also be obtained by solving a generalized 

eigen-equation: wwSXLXS b
T

t λα =+ −1)( . 

2.3 Semi-supervised Discriminant Analysis (SDA) 

SDA shares similar objective function as LapLDA, but it mainly focuses on semi-supervised 

scenario1, and simultaneously integrates Fisher criterion, locality preserving regularizer and 

Tikhonov regularizer. Given a set of partially labeled training samples ],[ ul XXX = , where lX  

and uX are the labeled and the unlabeled sample sets respectively, the objective function of SDA 

is defined as follows: 
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where bS  and tS  are calculated using the labeled samples lX , while the locality preserving 

regularizer )( WXLXWtr TT  is calculated using both the labeled and unlabeled samples X . α  

and β  are two trade-off parameters. It is easy to see that if 0== βα , SDA becomes the 

standard LDA; if 0,0 ≠= βα , it becomes RDA; and if 0,0 =≠ βα , it becomes the 

semi-supervised version of LapLDA. 

2.4 Globality Preserving Discriminant Analysis (GPDA) 

Revisiting the above mentioned three regularization-based LDA methods, we can see that they 

are formally similar to each other with specific discriminant criteria and data-dependent (or 

data-independent) regularizers. Motivated by this observation and to reexamine the performance 
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of these locality preserving LDAs, we purposely design a simple semi-supervised DR algorithm 

called Globality Preserving Discriminant Analysis (GPDA). Of course, it can naturally work in 

full supervised scenario. 

Instead of preserving the local geometry as imposed in LapLDA and SDA, GPDA aims to just 

preserve the discriminant information as well as the global structure in data. More specifically, we 

are given a set of partially labeled training samples ],[ ul XXX =  as in SDA. The discriminant 

information is captured by Fisher criterion based on those labeled samples lX , while the global 

structure is reflected by maximizing the variance of both labeled and unlabeled samples X . 

Without loss of generality, we assume that the samples have been centralized. Then, we define 

objective function of GPDA as follows: 
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where, bS  and tS  are respectively the between-class scatter matrix and total scatter matrix 

calculated using labeled samples; TXX is the sample covariance matrix calculated by both labeled 

and unlabeled samples, and thus maximizing )( WXXWtr TT  plays a role in reflecting the global 

structure in data. We call this term globality preserving regularizer to distinguish it from locality 

preserving one. It is worthwhile to point out that the locality preserving regularizer corresponds to 

a minimization problem essentially motivated by LPP [10], while the globality preserving 

regularizer corresponds to a maximization problem essentially motivated by PCA [13]. 

Naturally, we can add the Tikhonov regularizer )( WWtr T  to the objective function of GPDA 

to overcome the singularity of tS  for SSS problem, however, we instead prefer to performing 

GPDA in the PCA transformed subspace, since according to [14], this transform is 

computationally efficient and does not lose discriminating information. 

3 An empirical study on LapLDA and SDA 

  The experiments in [7] and [8] have verified that the LapLDA and SDA benefit from their used  

locality preserving regularizers which characterize the specific geometric structure of the data. 

Surprisingly, the authors of [7] and [8], however, seem to ignore comparing the LapLDA and SDA 

with simpler methods such as RDA without locality preserving term. In this section, we conduct 

further experiments and get somewhat counterintuitive results. 

3.1 Datasets and Experimental setting 

For convenience and impartiality in comparison, we employ the same datasets, experimental 

setting and parameter selection strategy as in [7] and [8]. Following their schemes, we consider 

two groups of different experiments. The first group focuses on supervised scenario (subsection 

3.2) based on 6 benchmark datasets shown in Table. 1. The same datasets are used to evaluate the 

effectiveness of LapLDA in [7]. The second group focuses on semi-supervised scenario 



(subsection 3.3) based on the CMU PIE face database. This dataset has been used to evaluate the 

effectiveness of SDA in [8]. The original PIE database includes 68 subjects with 41,368 face 

images as a whole. According to [8], we choose a subset (i.e. Pose C27)2 with frontal pose and 

varying illumination, which leaves us 43 images per subject. All the images are cropped to 32x32 

pixels, and the gray level values are rescaled to unit interval. Figure 1 shows some sample images 

from the first subject. Since SDA mainly focuses on semi-supervised learning, 30 images 

including only 1 labeled and 29 unlabeled are randomly selected from each subject as the training 

set, the rest as test set. As a result, this essentially brings about a single (labeled) training image 

face recognition problem [15]. In what follows, we simply call it “single training image face 

recognition problem” just for keeping consistent with the terminology used in SDA [8]. 

Table 1. The benchmark datasets and their corresponding partitions used in [7]. 

Datasets Training Test Sample size Dim Class 
USPS 750 2250 3000 256 10 

20Newsgroups3 240 960 1200 8298 4 
Waveform 300 900 1200 40 3 
Satimage 300 3300 3600 36 6 

Letter(a-m) 260 3640 3900 16 13 
Soybean 150 412 562 35 15 

 

 
Figure 1. Some face images from the PIE face database. 

For the two groups of experiments, the random partition on each data set is repeated 30 times 

and the classification accuracies (based on 1NN classifier) are averaged as the ultimate 

performance. One can also refer to [7] and [8] for detailed information about the datasets and 

experimental setting. We use these datasets mainly for two facts: 1) these datasets cover a wide 

range of sample sizes and feature dimensions, and consider different application fields such as 

face recognition, text classification; 2) all the datasets with the same experimental settings are 

used in [7-8] for evaluating LapLDA and SDA, and thus it is convenient and impartial for 

comparison. 

3.2 Experiments in supervised scenario: LapLDA vs. both RDA and GPDA 

Parameter setting. The regularized parameter α  in the three methods is determined by 5-fold 

cross-validation. For original LapLDA, the parameters k  and σ  in the adjacency weight 

matrix S  are artificially fixed [7]. Here, we also attempt to assign appropriate values for these 

parameters by 5-fold cross-validation. For 20Newsgroups and Satimage datasets, the total scatter 
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matrix tS  may be singular due to heavily concentrated eigenvalue distribution (see Figure 2). 

Therefore, for these two data sets we perform LapLDA and GPDA on the PCA transformed 

subspace where 98 percent energy of the data is kept. 
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Figure 2. The eigenvalue distributions on 6 benchmark datasets. For 20Newsgroups 

and Satimage datasets, their eigenvalues mainly concentrate on relatively small 

feature dimensions. This may incur the singularity of total scatter matrix. Therefore, 

we perform LapLDA and GPDA on the PCA transformed subspace which keeps 98% 

energy of the data. 

Experiment results. Now we perform original LapLDA (i.e., LapLDA with fixed parameter k  

and σ ), LapLDAcv (i.e., LapLDA with optimal selected k  and σ  by cross-validation), 

GPDA and RDA on the 6 benchmark datasets and report their corresponding classification 

accuracies in Table 2. For LapLDAcv, we can not get the experimental results on USPS and 

20Newsgroups datasets due to high computational cost of cross-validation. 
Table 2 The classification accuracies related to LapLDA, LapLDAcv, GPDA and 

RDA. The mean and standard deviation are based on 30 random partitions. (*For 

20Newsgourps and Satimage datasets, we perform LapLDA and GPDA on the PCA 

transformed subspace where 98 percent energy of the training data is kept.) 

LapLDA[7] LapLDAcv GPDA RDA Datasets Mean Std. Mean Std. Mean Std. Mean Std. 
USPS 84.58 0.84 - - 82.50 0.71 90.91 0.63 

20Newsgroups* 80.33 2.17 - - 82.45 1.35 84.08 1.06 
Waveform 80.74 1.83 81.25 1.57 74.27 1.95 81.29 1.88 
Satimage* 83.67 0.79 83.98 1.33 83.72 0.79 84.34 0.83 

Letter(a-m) 80.40 1.48 80.96 1.25 79.82 1.34 80.50 1.45 
Soybean 86.89 2.54 87.54 2.33 86.37 2.12 88.37 2.18 

According to these results, we can get the following observations: 

  1) The locality preserving LapLDA does not come up to very simple RDA on most of the used 

benchmark datasets, even though it resorts to much more complex regularizer and parameter 

selection procedure. Especially for the high-dimensional problems, RDA can achieve more 

outstanding performance than LapLDA. For example, in classification accuracy on USPS dataset, 

RDA achieves 90.91%, while LapLDA only 84.58%. 



  2) On some datasets, locality preserving LapLDA achieves better performance than globality 

preserving GPDA. This illustrates that local information may be more important than global 

information for discriminating tasks. However, GPDA can outperform LapLDA on some 

high-dimensional dataset such as 20Newsgroups. In section 4, we will give detailed discussion on 

the reasons why locality preserving regularizer may not work so well, especially for 

high-dimensional problems. 

3.3 Experiments in semi-supervised scenario: SDA vs. GPDA 

Single training image face recognition problem is one of classical challenges to 

appearance-based face recognition. Many typical DR methods (e.g. PCA and LDA) will suffer 

serious performance drop or even fail to work under such scenario [15]. Considering that one may 

easily gather unlabeled samples sometimes, Cai et al. proposed semi-supervised SDA algorithm 

for this task, and validated its effectiveness in comparison with many state-of-the-art 

semi-supervised methods such as LapSVM[16] for single (labeled) training image face 

recognition problem. Here, we compare SDA with GPDA based on the same problem. It is 

worthwhile to point out that the within-class scatter wS  is equal to zero if only one available 

labeled sample in each class, and thus the between-class scatter matrix bS  is exactly equal to the 

total scatter matrix tS . As a result, with simple formulation we can get compact objective 

functions for SDA and GPDA respectively: 
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Parameter setting. For original SDA, we use the code and parameters provided by Deng Cai 

[8]. Concretely, the trade-off parameters are set to 1.0=α , 01.0=β , the neighborhood size k  

on the graph is set to k =2, the adjacency weight is computed by cosine distance. To avoid 

singularity problem, we perform compact SDA and GPDA on the PCA transformed 1−l  

dimensional subspace, where l  is the number of the labeled training samples. 

In [8], the authors just experiment with fixed 29 unlabeled samples per subject. Here, we 

attempt different unlabeled sample sizes of 1, 4, 9, 19, 29, since it is generally uneasy to collect 

abundant unlabeled training samples for single training image face recognition application [15]. 

The experimental results of original SDA, compact SDA and GPDA are shown in Table 3. 
Table 3. Recognition error rates of original SDA, compact SDA and GPDA. The 

mean and standard deviation is based on 30 random partitions. The results are shown 

in the form of “mean ± standard deviation% (dimensions)”. 

Recognition error rates with different unlabeled training sample size per subject  1 4 9 19 29 

SDA[8] 70.2 ± 1.9(67) 65.1 ± 2.3(67) 56.1 ± 2.6(67) 45.0 ± 3.5(67) 40.5 ± 2.7(67)
compact SDA 63.8 ± 2.9(67) 58.2 ± 5.1(67) 46.8 ± 3.6(65) 35.9 ± 3.1(65) 32.7 ± 2.6(65)

GPDA 37.5 ± 3.1(58) 36.2 ± 2.7(57) 34.1 ± 2.1(53) 33.6 ± 2.4(52) 32.7 ± 2.3(54)



  From the experimental results, we get the following observations: 

  1) Globality preserving GPDA tends to achieve better performance than the locality preserving 

SDA for single (labeled) training image face recognition problem. Incorporating the experimental 

results on 20Newsgroups dataset, we arrive at a conclusion that the locality preserving regularizer 

does not necessarily come up to globality preserving one, especially for high-dimensional 

problems. 

  2) With rapid decrease of unlabeled samples, the locality preserving SDA will suffer serious 

performance drop. In contrast, the globality preserving GPDA shows relatively stable performance. 

For instance, GPDA gets lower recognition error rate even though only one labeled and one 

unlabeled samples per class are available. 

  3) In addition, the compact version of SDA can consistently achieve better performance than its 

original version. This is mainly owing to the use of prior knowledge (i.e., only one labeled sample 

per class is available) and the previous PCA transformation. 

4 Further discussion on locality preserving strategy 

According to the previous two groups of experiments, we notice that the locality preserving 

LDA algorithms, i.e., LapLDA and SDA, may not come up to the simpler RDA and GPDA, 

especially for high-dimensional problems. Different from many existing works[7-8, 10] which 

tend to emphasize the advantages of locality preserving strategy, in this section, we instead discuss 

the reasons why it may not work so well. Moreover, we provide alternative strategies and 

suggestions to address this problem. 

4.1 Why locality preserving criterion may not work well 

Naturally, how to characterize the “locality” is at the heart of the locality preserving algorithms. 

For most of the existing locality preserving methods, this reduces to a graph construction 

problem[17] which generally relies on the nearest neighbor criterion as in Eq. (4). However, such 

construction manners may be a hidden trouble incurring the failure of locality preserving strategy, 

due to that it suffers from several serious problems as follows: 

Issue 1: Curse of dimensionality. Generally speaking, the locality preserving LDA algorithms 

such as LapLDA and SDA are mainly motivated by manifold learning, assuming that the data lie 

on or near a low-dimensional manifold embedded in the ambient space. However, to characterize 

the manifold structure, the sample sizes are required to grow exponentially with the intrinsic 

dimensions of the manifold. As pointed out in [18], this makes the local learning strategy suffer 

from the so-called curse of dimensionality. For example, recent research shows the face subspace 

is estimated to have at least 100 dimensions[19]. As a result, many locality based manifold 

learning techniques perform well on some artificial datasets such as Swiss roll, but do not work 

well for real-world tasks[20]. This further explains why the locality preserving LapLDA and SDA 

can not perform well for high-dimensional problem in our above experiments. It is well known 

that dimensionality reduction is mainly motivated to overcome the “curse of dimensionality”, but 



unfortunately locality preserving criterion itself suffers from such a curse. This seems to be a 

paradox. 

Issue 2: Sensitivity to noise and outlier. As described before, the “locality” is generally 

determined by the nearest neighbor criterion for most of the current local DR or semi-supervised 

learning algorithms [10, 17, 21-22]. However, this leads to that the performance of those methods 

generally relies heavily on how well the nearest neighbor criterion works in the original 

high-dimensional space[23]. Since our ultimate goal is classification, we expect that the 

constructed graph contains as much discriminating information as possible. That is, two data 

points are linked by an edge if they are likely from the same class. However, based on the nearest 

neighbor criterion, the graph may link the sample points from different classes, especially in 

high-dimensional and noisy scenario. For example, the distance between the face images from the 

same subject may be larger than the distance between the ones from the different subjects due to 

varying lighting as shown in Figure 3. Obviously, without sufficient training samples, the locality 

preserving criterion may make the results worse in this case for ultimate classification task. This 

further illustrates why the SDA algorithm can not even outperform globality preserving GPDA on 

PIE face database. 

 
Figure 3. Three face images under varying lighting. The numbers denote the 

Euclidean distances (wrt. the gray values) among the face images. It is easy to see 

that the distance between the images from the same person is larger than that from the 

different persons. 

Issue 3: Difficulty of parameter selection. Another problem for the locality preserving 

strategy is the difficulty of parameter selection involved in adjacency graph construction. It is well 

known that the graph is characterized by the free parameters k andσ . According to recent 

research[24], these parameters affect the ultimate classification accuracy significantly. However, 

assigning proper values for these free parameters is generally uneasy. One way to address this 

problem is resorting to the cross-validation technique, but it is time-consuming and wasteful of 

training data. What’s worse is that currently there seems no reliable approach for parameter 

selection if only few labeled samples are available[25]. 

4.2 Suggestions to address these issues 

Suggestion 1: Use of prior knowledge. In pattern recognition and machine learning field, 

incorporating domain knowledge is seen as an important way to improve the generalization. In 

what follows, we give two examples based on LapLDA and SDA respectively to show that the use 

1.90x103

0.84x103 0.92x103 



of proper prior knowledge is helpful for improving their performance. 

Example (1) LapLDA based on class-specific adjacency graph. For supervised methods, we can 

naturally construct class-specific graph since labeled information is fully available. That is, we 

link two data points if they satisfy Eq.(4) and simultaneously belong to the same class. This 

strategy has been used in many supervised versions of local DR methods [23, 26]. Here, we 

attempt to perform LapLDA based on such class-specific adjacency graph. Table 4 shows the 

classification accuracies of original LapLDA and the class-specific LapLDA. Surprisingly, the 

class-specific graph can improve the performance, especially on high-dimensional datasets, even 

though the original LapLDA has considered class information by Fisher criterion. This illustrates 

that the supervised information may be more important than local structure information for 

classification tasks. In class-specific graph, the supervised information plays a role in pruning the 

error links among the data points from different classes. 
Table 4. The classification accuracies of original LapLDA and class-specific LapLDA. 

The latter denotes LapLDA with newly constructed graph based on supervised 

information. 

Original LapLDA Class-specific LapLDA Datasets Mean Std. Mean Std. 
USPS 84.58 0.84 86.36 0.72 

20Newsgroups 80.33 2.17 82.49 1.28 
Waveform 80.74 1.83 81.04 1.90 
Satimage 83.67 0.79 83.67 0.79 

Letter(a-m) 80.40 1.48 80.39 1.48 
Soybean 86.89 2.54 86.93 2.55 

Example (2) SDA on illumination-insensitive subspace. In unsupervised or semi-supervised 

scenario, there is no sufficient labeled information available, and thus it is generally uneasy to 

construct class-specific graph. However, if the domain prior knowledge is reasonably considered, 

one may still improve the existing algorithms significantly. In fact, our previous experiments in 

section 3.3 have shown that we can formulate a compact SDA and help to improve the original 

SDA if single label prior is reasonably used. Here, we take the above mentioned PIE face database 

again as an example to demonstrate that the performance of SDA can be further improved by 

employing the illumination prior provided by this database. Revisiting the face images shown in 

Fig.1 and Fig. 3, one may intuitively find that much of the variation among the face images is due 

to illumination change which does not generally correspond to important discriminating 

information. Therefore, we attempt to perform SDA on PCA transformed subspace by discarding 

several most significant principal components since they generally correspond to variation in 

lighting. Not only can this mitigate the curse of dimensionality, but also avoid the singularity 

problem due to insufficient samples. This strategy has been suggested to improve the performance 

of Eigenface [13], we apply it here under semi-supervised setting. As shown in Figure 3, the 

minimal error rate of SDA drops from 40.5% to 27.8% on such pruned subspace. 
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Fig. 3 The recognition error rates of original SDA and its pruned subspace version. 

Suggestion 2: Non-local strategy. According to our previous experiments, the proposed 

globality preserving GPDA may achieve better performance than the locality preserving LDA 

algorithms sometimes, especially for high-dimensional problems. Therefore, we can consider 

handling those issues incurred in locality preserving methods in virtue of non-local strategy. Not 

only can this bypass the curse of dimensionality to a certain extent, but also mitigate the difficulty 

of parameter selection. In fact, a few years ago, Bengio et al.[27-28] suggested non-local learning 

as a new research topic. Here, we provide two specific non-local strategies according to our recent 

studies. 

(1) Graph construction based on sparse representation. Different from the traditional adjacency 

graph which relies on the nearest neighbor criterion, recently we attempt to construct non-local 

graph based on minimizing a L1 regularization-related objective function [29]. It can potentially 

link the sample points far from each other, and is validated more discriminative than the nearest 

neighbor criterion on several publicly available face databases. 

(2) Optimizing the projection directions and adjacency weight matrix simultaneously in a 

unified objective function (to be brief, it means that one minimizes the locality preserving 

term )( WXLXWtr TT  wrt. W and L simultaneously). Although this leads to a non-convex 

optimizing problem, fortunately we can solve it by alternating iterative technique and get 

suboptimal solutions. As a result, the weight values corresponding to a certain point do not 

necessarily rely on its neighbors in input space, especially for insufficiently sampling case. We 

will give detailed discussion about this topic in a forthcoming paper. 

5 Conclusions 

In this paper, we make an empirical discussion on two recently proposed locality preserving 

LDA methods, LapLDA and SDA. Through further experiments, we find that these extended LDA 

algorithms can not generally outperform relatively simple methods such as Regularized 

Discriminant Analysis (RDA) and the purposely-designed globality preserving discriminant 



analysis (GPDA). This drives us to reconsider if one should use or how to use the locality 

preserving strategy in practice. In general, our suggestion is: for the problems which have a few 

degrees of freedom and thus follow the low-dimensional manifold hypothesis, one should consider 

locality preserving strategy; however, for the others (e.g., face images especially under 

uncontrolled condition) which have tens or hundreds of degrees of freedom, the non-local strategy 

may be a more appropriate option. 

It is worthwhile to note that this paper is just an empirically comparative study based on the 

benchmark datasets recently used to evaluate the effectiveness of LapLDA and SDA. Naturally, an 

in-depth theoretical analysis of the reasons why these localized methods may not work so well is 

important and thus imperatively required. This will be our next research goal. 
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