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Abstract: Single training image face recognition is one of main challenges to appearance-based 

pattern recognition techniques. Many classical dimensionality reduction methods such as LDA 

have achieved success in face recognition field, but can not be directly used to the single training 

image scenario. Recent graph-based semi-supervised dimensionality reduction (SSDR) provides a 

feasible strategy to deal with such problem. However, most of the existing SSDR algorithms such 

as Semi-supervised Discriminant Analysis (SDA) are locality-oriented and generally suffer from 

the following issues: 1) they need a large number of unlabeled training samples to estimate the 

manifold structure in data, but such extra samples may not be easily obtained in a given face 

recognition task; 2) they model the local geometry of data by the nearest neighbor criterion which 

generally fails to obtain sufficient discriminative information due to the high-dimensionality of 

face image space; 3) they construct the underlying adjacency graph (or data-dependent regularizer) 

using a fixed neighborhood size for all the sample points without considering the actual data 

distribution. In this paper, we develop a new graph-based SSDR algorithm called Sparsity 

Preserving Discriminant Analysis (SPDA) to address these problems. More specifically, 1) the 

graph in SPDA is constructed by sparse representation, and thus the local structure in data is 

automatically modeled instead of being manually predefined. 2) With the natural discriminative 

power of sparse representation, SPDA can remarkably improve recognition performance only 

resorting to very few extra unlabeled samples. 3) A simple ensemble strategy is developed to 

accelerate graph construction, which results in an efficient ensemble SPDA algorithm. Extensive 

experiments on both toy and real face data sets are provided to validate the feasibility and 

effectiveness of the proposed algorithm. 
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1 Introduction 

One of the major challenges to appearance-based face recognition is the small sample size (SSS) 

problem (Duda, Hart et al. 2001). In particular, in many practical applications such as law 

enforcement, driver license or passport card identification, usually only one labeled sample per 

person is available. Under such scenario, most of the traditional methods including Eigenface 

(Turk and Pentland 1991) and Fisherface (Belhumeur, Hespanha et al. 1997) will suffer serious 

performance drop or even fail to work. Therefore, special tricks, such as synthesizing virtual 

sample (Beymer and Poggio 1995) and localizing the training image (Chen, Liu et al. 2004), are 

generally required to deal with the single training sample problem. One can refer to a recent 

survey (Tan, Chen et al. 2006) for more details on this topic. 

Although much success has been achieved by synthetic sample techniques, such artificial 

process has trouble in capturing the real face data distribution due to the variations of pose, 

illumination and facial expression (Tan, Chen et al. 2006). An alternative and more natural way to 

deal with such problem is semi-supervised dimensionality reduction (SSDR) if considerable 

unlabeled samples are available. For example, the recent Semi-supervised Discriminant Analysis 

(SDA) (Cai, He et al. 2007) , a semi-supervised extension of typical Linear Discriminant Analysis 

(LDA), has been successfully applied to the single training image face recognition problem1. 

Besides SDA, researchers have developed some special SSDR algorithms, such as SSLDA (Song, 

Nie et al. 2008), SSMMC (Song, Nie et al. 2008), lapLDA (Chen, Ye et al. 2007), etc., and 

reported that the semi-supervised extensions can generally improve the performance over their 

supervised counterparts like LDA and MMC (Li, Jiang et al. 2006; Liu, Chen et al. 2007). Despite 

being independently proposed, these SSDR algorithms share similar starting point and can be 

unified under a graph-based dimensionality reduction framework (Yan, Xu et al. 2007; Song, Nie 

et al. 2008). We will give a brief review on these methods in the next section. 

Despite the success of many graph-based SSDR algorithms in dealing with partially labeled 

face recognition problem (Cai, He et al. 2007; Song, Nie et al. 2008), there are still some problems 

that are not properly addressed, especially under the single labeled training image scenario. In 

                                                        
1 Strictly speaking, it should be called “single labeled image face recognition problem”. We abuse the terminology, 
i.e., single training image face recognition problem, just for keeping consistent with the expression in (Cai, He et 
al. 2007). 
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particular, 

1) Many existing graph-based SSDR algorithms are based on manifold assumption, implying 

that sufficiently many samples are required to characterize the data distribution (Belkin, 

Niyogi et al. 2006). For example, with a large number of auxiliary unlabeled training samples, 

SDA can remarkably improve the performance of LDA. However, it is generally uneasy to 

obtain a sufficient sampling for intrinsic high-dimensional data such as face images2. 

Therefore, a natural question is: can we improve the performance of LDA just with very few 

extra unlabeled samples? 

2) As pointed out in (Zhu 2008), although graph is at the heart of the graph-based 

semi-supervised methods, its construction has not been studied extensively. Most of the 

current algorithms such as SDA and lapLDA construct their adjacency graphs by the nearest 

neighbor criterion on raw data set. However, the nearest neighbor criterion generally fails to 

obtain sufficiently discriminative information due to its poor performance in the original 

high-dimensional face space. 

3) The underlying adjacency graphs (or data-dependent regularizers) involved in many SSDR 

algorithms are artificially defined beforehand and use a fixed neighborhood size for all the 

sample points. Not only does this ignore the actual data distribution, but also bring the 

difficulty of parameter selection, especially when only few labeled samples are available as in 

single training image face recognition. 

To address the above issues, in this paper, we present a new graph-based SSDR algorithm called 

Sparsity Preserving Discriminant Analysis (SPDA) which is motivated by the recent progress in 

sparse representation (Qiao, Chen et al. 2009; Wright, Yang et al. 2009). Concretely, we highlight 

the favorable properties of SPDA and main contributions of this paper: 

1) SPDA can remarkably improve the performance of typical LDA only resorting to very few 

extra unlabeled samples, because it does not based on manifold assumption, but mainly 

focuses on the discriminative power which can be naturally achieved by minimizing a 

1l -regularization objective function. We will give a detailed discussion on this point in 

                                                        
2 A recent research (Meytlis and Sirovich 2007) has shown that the face space is estimated to have at least 100 
dimensions. 
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section 3. 

2) Graph construction involved in SPDA relies on sparse representation classification criterion 

(Wright, Yang et al. 2009) which is generally superior to the nearest neighbor criterion, 

especially for high-dimensional data. 

3) The “neighborhood” size and edge weight for each sample are automatically obtained in one 

single step by a 1l  optimization problem. As a result, different sample will get different 

neighborhood sizes, which is more adaptive to complex data distribution. 

4) Alternatively, we develop a simple ensemble SPDA algorithm to reduce the computational 

complexity involved in obtaining sparse representation for graph construction when a large 

number of unlabeled samples are provided. Also, as a byproduct, we formulate the kernelized 

version of SPDA. 

5) The idea behind SPDA is quite general, and can potentially be extended to other graph-based 

semi-supervised learning algorithms by integrating with different discriminant criteria or loss 

functions. 

The rest of the paper is organized as follows. Section 2 briefly reviews several existing 

graph-based SSDR algorithms. In section 3, we develop a new data-dependent regularizer and 

SPDA algorithm. In Section 4, we extend SPDA to kernel and ensemble versions. Section 5 shows 

the experimental results, followed by the conclusion and future work in Section 6. 

2 Brief review of semi-supervised dimensionality reduction (SSDR) 

Firstly, we want to make clear that why we employ SSDR instead of other Semi-supervised 

learning (SSL) algorithms for the single training image face recognition problem. Indeed, various 

SSL algorithms have been developed in the past few years. One can refer to (Zhu 2008) for a 

detailed literature survey. However, as pointed out in (Cai, He et al. 2007), many of the existing 

SSL algorithm can only work on transductive setting, which requires both the training and test set 

are available during the learning process. Therefore, they are not always suitable for face 

recognition applications where the test set is generally not available during the training phrase. In 

contrast, SSDR first learns a subspace from the available training set (containing labeled and 

unlabeled samples), and then the forthcoming test sample is projected onto the subspace for 
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further decision. 

2.1 Semi-supervised Discriminant Analysis (SDA) (Cai, He et al. 2007) 

SDA extends LDA to incorporate the manifold structure illustrated by both labeled and 

unlabeled data. Therefore, SDA aims to best preserve the discriminative information as well as 

the geometric structure in data. Given a set of data points 1 2[ , , , ]nX x x x= L  including both 

labeled and unlabeled samples, the SDA objective function is defined as follows: 
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where, bS  and tS  are respectively the inter-class and total scatter matrix calculated using the 

labeled training samples. wwT  is the Tikhonov regularizer, and )(MR wJ  is a data-dependent 

manifold regularizer (Belkin, Niyogi et al. 2006). 1λ  and 2λ  are two parameters, controlling 

the balance among the three terms in denominator. Obviously, if 021 == λλ , SDA becomes the 

standard LDA; if 0,0 21 =≠ λλ , it becomes the Regularized Discriminant Analysis (RDA) 

(Hastie 2009). 

The data-dependent regularizer in SDA plays a role in preserving the manifold structure in data. 

It is constructed using both labeled and unlabeled training samples as follows: 
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Since SDA shares the similar objective function to LDA, one can solve SDA by the following 

generalized eigenvalue problem: 

 wXLXISwS T
tb )( 21 λλη ++=  (4)

2.2 Other SSDR algorithms 
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Although, in the recent years, many graph-based SSDR algorithms have been proposed 

independently, most of them share the same idea: the labeled sample points are used to maximize 

the discriminative power, while the unlabeled sample points are used to best preserve the 

geometric structure in data. As a result, they are similar to each other with different choices of 

discriminant criterion and regularization term. Table 1 gives several popular examples of those 

methods. 

Table 1. Several special SSDR algorithms proposed recently 

Discriminant criterion Regularization term 
algorithms 

Fisher MMC* Tiknonov Manifold 
SDA (Cai, He et al. 2007) √  √ √ 
LapLDA (Chen, Ye et al. 2007) √   √ 
SSLDA(Song, Nie et al. 2008) √  √ √ 
SSMMC (Song, Nie et al. 2008)  √ √ √ 

*Maximum Margin Criterion 

Since the discriminant criteria (e.g., Fisher criterion and MMC) are usually off-the-shelf, the 

data-dependent regularizer naturally plays an important role in the graph-based SSDR algorithms. 

Also, we notice that the data-dependent regularizer is generally determined by a graph constructed 

based on both labeled and unlabeled samples. For example, in SDA, the manifold regularizer roots 

in the above mentioned k-neighborhood graph (3). Therefore, in the next section, we will start to 

introduce our SPDA algorithm from constructing a novel graph. 

3 Sparsity preserving discriminant analysis 

3.1 Graph construction based on sparse representation 

3.1.1 Motivation from sparsity 

We first give the reasons why the sparse representation is suitable to graph construction. 

1) Sparsity plays an important role in typical k-neighborhood graph. On one hand, sparsity 

implicitly characterizes the locality of data distribution; on the other hand, it can effectively 

save computational cost and storage space. However, for the typical k-neighborhood graph 

constructed by eqn. (3), its sparsity depends on artificially fixed neighborhood size. It seems 

to be unreasonable that all data points share an identical k, which may not characterize the 

manifold structure well, especially in undersampling case. This motivates us to consider 
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whether we can automatically learn the sparsity from the data instead of artificial 

predefinition. 

2) The sparsest representation is naturally discriminative. Since our ultimate goal is 

classification, we expect that the graph can contain as much discriminative information as 

possible. That is, two data points are linked by an edge if they are likely from the same class. 

For the typical k-neighborhood graph, this desirability depends heavily on how well the 

nearest neighbor criterion works in original space (Chen, Chang et al. 2005). Unfortunately, 

the nearest neighbor criterion does not generally achieve good performance for raw 

high-dimensional data, e.g. face images (Meytlis and Sirovich 2007). In contrast, the recent 

researches (Wright, Yang et al. 2009) showed that sparse representation has natural 

discriminative power and can work well under high-dimensional scenario. Moreover, the 

discriminative power is closely related to the class numbers rather than the sample numbers 

(Wright, Yang et al. 2009). As a result, we might construct a graph which contains 

considerable discriminative information without requiring abundant unlabeled samples. 

3.1.2 The objective function for graph construction 

Instead of considering k-neighborhood and the pairwise similarity as in typical graph 

construction, we attempt to automatically construct a graph G and make it well preserve 

discriminative information based on sparse representation. 

Given a set of sample points 1 2[ , , ]nX x x x= L , where m
i Rx ∈ , ni ,,2,1 L= , we expect to 

reconstruct each sample point ix  using as few data points in X  as possible. This can be 

expressed by the following 0l -minimization problem: 
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where T
iniiiiii sssss ],,,0,,,[ 1,1,1 LL +−=  is a n-dimensional column vector in which the i-th 

element is equal to zero, implying the ix  is removed from X , and the element 

ijs , ij ≠ denotes the contribution of jx  for reconstructing ix . It is well known, (5) is a NP-hard 
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problem. Here, we bypass this difficulty by solving the following 1l  optimization problem3: 
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where 1l  is used instead of 0l . It can be effectively solved by linear programming. Recent 

researches showed that if the optimal solution sought is sparse enough, the solution of 

0l minimization problem is equal to the solution of 1l minimization problem (Baraniuk 2007). 

After obtaining all of the optimal reconstruction coefficient iŝ  for each ix , we construct a 

sparse weight matrix S  by 

 ]ˆˆˆ[ 21 ns,,s,sS L=  (7)

Then, the new constructed graph },{ SXG = , where X  is the training sample set, S  is the 

edge weight matrix. 

  In practice, the constraint ii Xsx =  in (6) does not always hold due to noise or insufficient 

training samples. We extend it by incorporating a reconstructive compensation term it  as 

follows: 
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which is equivalent to 

 piiis
Xsxs

i

||||||||min 1 −+λ  (9)

where m
iii RXsxt ∈−=  can be seen as a compensation (or error tolerance) for reconstructing 

ix . pit ||||  denotes the pl -norm, a special measure of the compensation it . From the Bayesian 

viewpoint, pit ||||  essentially corresponds to different prior distribution (or assumption) about it . 

For example, 2|||| it  is related to Gaussian prior4, while 1|||| it  is related to Laplacian prior5. λ  

                                                        
3 In fact, suboptimal solutions can be found by a variety of strategies such as greedy-based (Mallat and Zhang 
1993) and Bayesian-based (Ji, Xue et al. 2008) methods. Here, we consider the 1l  strategy simply due to that the 

equivalence of the 0l  and 1l  problem has been studied deeply from a mathematical perspective. 
4 In this sense, the (9) has the same mathematical expression as the popular LASSO (Tibshirani 1996) in statistics. 
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is a regularized parameter to control the trade-off between the sparsity of reconstructive 

coefficient and the reconstructive compensation. Although the parameter selection problem has 

been studied in-depth (Mallat and Zhang 1993; Ji, Xue et al. 2008; Hastie 2009), there is currently 

no reliable method in theory to assign optimal value for λ . Therefore, we simply set 1=λ  in 

all our experiments. 

  It is worthwhile to point out that the above graph construction manner differs from the one in 

our previous SPP algorithm (Qiao, Chen et al. 2009), though both are motivated by sparse 

representation (Wright, Yang et al. 2009). More specifically, 1) in SPP we used two independent 

sparse representation models, which are directly developed from (Wright, Yang et al. 2009). In 

contrast, here we reveal the inherent relationship between these models and unify them in one 

single objective function (8). As a result, the graph construction models behind SPP are just two 

special instances of (8), and we can develop new graph construction model from the unified 

objective according to different priors. 2) In SPP, we require sum-to-one constraint as in LLE 

(Roweis and Saul 2000). However, we ignore such constraint in SPDA, since we mainly concern 

discrimination. Not only does this save computational cost, but also, more fortunately, we achieve 

higher recognition rate than SPP (see table 4 in section 5 for details). 

3.2 Sparsity preserving regularization 

Now we propose the new data-dependent regularizer based on the previously-constructed graph 

G= },{ SX . Revisiting the manifold regularizer (2) in SDA, it implies that if ix  and jx  are 

“close” to each other, then their low-dimensional representation i
T

i xwy =  and j
T

j xwy =  

should be close to each other as well. However, for the newly constructed graph G, its edge weight 

ijŝ  is not a rigorous similarity measure, and thus we can not construct the data-dependent 

regularizer as in SDA. 

Note that the relationship between ix  and jx  is characterized by ∑
=

≈
n

j
jiji xsx

1

ˆ instead of 

                                                                                                                                                               
5 It has been validated applicable to face images with partial occlusion (Wright, Yang et al. 2009). In this paper, 
we use this prior by empirically modeling the variations of expression and illumination as partial corruption on 
clear face images. 
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simple “closeness”, and hence we expect that their low-dimensional representations iy  and jy  

preserve such relationship as well, i.e., ∑
=

≈
n

j
jiji ysy

1

ˆ , which is motivated by LLE (Roweis and 

Saul 2000). Therefore, we propose the data-dependent regularizer by minimizing the following 

objective function: 

 ∑
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where ],,,[ 21 nyyyY L=  is the low-dimensional representation of the original data. Since the 

regularizer aims to preserve the sparse reconstructive relationship, we call it sparsity preserving 

regularizer. Then, with simple algebraic formulation (see appendix), it can be rewritten as 

 wXXLw T
s

T  (11)

where TT
s SSSSIL +−−= . Although, the data-dependent regularizer can potentially be 

incorporated into many semi-supervised learning algorithms, we only focus on SSDR in this 

paper. 

3.3 Sparsity preserving discriminant analysis (SPDA) 

Similar to SDA, we extend LDA6 to semi-supervised version based on the newly proposed 

data-dependent regularizer. Naturally, the objective function can be defined as follows: 
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where, bS  and tS  are respectively the inter-class and total scatter matrices, which are 

calculated just using the labeled training samples. I  is an identity matrix related to Tikhonov 

regularizer, and wXXLw T
s

T  is the sparsity preserving regularizer. The solution of (12) can be 

easily achieved by the following generalized eigenvalue problem. 

 wXXLISwS T
stb )( 21 λλη ++=  (13)

The algorithmic procedure is shown as follows. Concretely, we assume the training sample 

                                                        
6 Of course, we can consider other discriminant criteria such as MMC if necessary. 
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set 1 1[ , , , , , ] [ , ]l l l u L UX x x x x X X+ += =L L , where the first l training samples l
iix 1}{ =  are 

labeled and from c classes (there are kl  samples in the k-th class), the last u training samples 

ul
liix +
+= 1}{  are unlabeled. Without loss of generality, the sample points in LX  are ordered 

according to their labels. 

Algorithm 1. Sparsity Preserving Discriminant Analysis 

Step1. Calculate bS = T
LLL XHX  and tS = T

LL XX  based on the labeled training samples 

in LX , where, ),,,( 21 c
L HHHdiagH L=  is a block-diagonal matrix, and kH  is 

a kk ll ×  matrix with all elements equal to kl/1 . 

Step2. Construct graph G= },{ SX . The weight matrix S  is calculated based on all training 

samples in X  using (6) or (8). 

Step3. Calculate the data-dependent (sparsity preserving) regularizer wXXLw T
s

T , where 

SSSSIL TT
s +−−= . 

Step4. Calculate the projections by the generalized eigenvalue problem (13), and the projection 

matrix ],,,[ 21 dwwwW L= , where iw  are the eigenvectors corresponding to the 

largest d eigenvalues. 

4 Extensions of SPDA 

In this section, we extend the proposed algorithm to its kernelized version (for improving the 

flexibility of SPDA) and ensemble version (for reducing the computational complexity), 

respectively. 

4.1 Kernel SPDA 

As described above, SPDA only focuses on linear dimensionality reduction, and thus it may fail 

to deal with the highly nonlinear structure in data. Fortunately, we can easily extend SPDA to 

perform in Reproducing Kernel Hilbert Space (RKHS) like other graph-based dimensionality 

reduction algorithms. 

Let Fx →:φ be a function mapping the data points in the input space to the feature space. 
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According to the kernel trick, we expect to replace the explicit mapping with the inner 

product ))()((),( jiji xxxxK φφ ⋅= . Furthermore, we assume )](,),(),([ 21 lL xxx φφφφ L= , 

)](,),(),([ 21 nllU xxx φφφφ L++=  and ],[ UL φφφ = , then the inter-class scatter matrix and the 

total scatter matrix in the feature space can respectively be denoted as 

 F
bS = TTLT

LLL H
H

H φφφφφφ =⎟⎟
⎠

⎞
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⎝

⎛
=

00
0

, F
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I
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00
0

=⎟⎟
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⎝
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where LH  is defined as in the SPDA algorithm. 

  According to the Representer Theorem (Scholkopf, Herbrich et al. 2001), the projection Fw  

sought in feature space can be expressed as φα=Fw , where T
n ],,,[ 21 αααα L= is a 

coefficient vector that represents Fw in the feature space. Let φφ TK = be the kernel matrix, the 

objective function of kernel SPDA can be expressed as follows: 
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The optimal solution α̂ can be obtained by solving the following generalized eigenvalue 

problem: 

 αλληα )~( 21
T

s
TT KKLKKIKKHK ++= (16)

Thus, given a new data point x , its low-dimensional representation is ),(ˆ)()( xKxw TTF ⋅= αφ , 

where ),( ⋅⋅K  is a kernel function. 

4.2 Ensemble SPDA 

According to (Wright, Yang et al. 2009), the sparsity of the ideal solution sought is mainly 

related to the class numbers rather than the sample numbers. Therefore, intuitively, a large number 

of unlabeled samples do not necessarily help improve the performance of SPDA significantly, and 

conversely incur high computational burden since SPDA constructs graph based on all the training 

samples. Here, we introduce a very simple ensemble strategy to speed up the proposed SPDA 

algorithm based on the above observation. 

In particular, given a set of training samples 1 1[ , , , , , ] [ , ]l l l u L UX x x x x X X+ += =L L  as 
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mentioned before, we randomly partition the unlabeled sample set UX  into q small sample 

sets UqUU XXX ,,, 21 L , and thus we can generate a series of new training sets 

],[,],,[ 11 UqLqUL XXXXXX == L . Then, we perform SPDA on each new training sets and 

the test sample is classified by voting strategy. Concretely, the ensemble SPDA algorithmic 

procedure is shown as follows. 

Algorithm 2. ensemble SPDA 

Step1. Partition the training set X  into q sub-sets qXXX ,,, 21 L . 

Step2. Implement SPDA on each sub-set, and get q subspaces. 

Step3. Project the test sample x  onto each subspace, and then implement classification (e.g., 

1NN) on each subspace. 

Step4. Vote to decide the class label of the test sample. 

5 Experiments 

5.1 Illustrative examples 

In this subsection, we intuitively illustrate why the proposed algorithm might work well through 

two illustrative experiments on toy (5.1.1) and face (5.1.2) data sets, respectively. 

5.1.1 Illustrative experiment on toy data 

For simplicity of our illustration here, we only consider binary classification problem and 

assume that each class lies in a 1-dimensional subspace embedding in 3-dimensional ambient 

space. We randomly sample 3 (1 labeled and 2 unlabeled) data points from per class for training. 

Fig. 1(a) gives an instance of so-generated training sample points which are respectively signed 

with pentacle and square. In order to approximate practical problem, the data points are corrupted 

by Gaussian additive white noise with standard deviation 0.1. 

Based on the training data, we construct the typical neighborhood graph and the sparse 

reconstruction graph, respectively. In particular, Fig. 1(b) gives the neighborhood graph, where the 

neighborhood size k=2. It is easy to see that the edges on the graph link the data points which are 

close to each other, yet from different class. Obviously, other locality-oriented graph construction 
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manners such as the one involved in LLE may also suffer from the fact that the samples from 

different class are close to each other. In contrast, Fig. 1(c) gives the sparse reconstruction graph 

behind SPDA. With the sparsity constraint, the non-zero reconstructive coefficients for a given 

data point more possibly match the data points in the same class. As a result, so-constructed graph 

tends to contain more discriminative information than typical neighborhood graph. More 

specifically, we classify 100 randomly generated test samples using 1-Nearest Neighbor (1NN) 

classifier on the obtained 1-dimensional subspace by SDA and SPDA, respectively. The average 

classification accuracies corresponding to SDA and SPDA are 70.34% and 87.22%, respectively. 

 

(a) The data distribution           (b) Graph for SDA              (c) Graph for SPDA 

Fig. 1 Toy problem 

5.1.2 Illustrative experiment on face data 

The previous toy problem showed that locality-oriented graph construction manners may affect 

the performance significantly. How about on real-world data sets? Here, we take AR database7 as 

an example to compare the proposed algorithm with LLE, since the graph behind SPDA is 

constructed by 1l -minimization optimization problem which is closely related to the least square 

graph construction hidden in LLE. 

More specifically, we assume the face data set 1 2[ , , , ]nX x x x= L , where the samples are 

ordered according to their labels for the convenience of illustration. Then, given a face 

image Xxi ∈ , by solving (8) or (9), we obtain a sparse reconstruction coefficient is  in which 

                                                        
7  See the next subsection for the description about this database. Here we just used the face images taken in the 
first session. 
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the nonzero values model the contribution of each support point8 or support face to represent ix . 

In other words, simply by solving (8) or (9), we get both the graph and its corresponding edge 

weights simultaneously, which is contrary to the scheme of LLE, where the graph and its edge 

weights are estimated separately. In particular, for a specific face image, Fig. 2 gives an 

illustration of support faces and corresponding coefficient found by SPDA and those by LLE. 

0 100 200 300 400 500 600 700
0

0.1

0.2

 0 100 200 300 400 500 600 700
0

0.1

0.2

 

≈ 0.21× +0.17× +0.13×       ≈ 0.25× +0.23× +0.13×  

Figure 2: Illustration of three support faces with corresponding coefficients (bottom 

row) for a given face image (the first image on the left side of the approximately 

equal mark in bottom row) and the reconstruction coefficient distribution (upper 

row) using SPDA (left) and LLE (right), respectively. 

  From the experiment result, we note that the support faces found by SPDA with a 

1l -minimization criterion are more discriminative than those by LLE with the least square 

criterion – two of three faces with the same identity as the prototype are correctly found by SPDA 

scheme. 

5.2 One (labeled) training image face recognition 

In this subsection, we perform one training image face recognition experiments on three 

publicly available face databases: CMU PIE, Extended Yale B and AR databases. 

5.2.1 Database description 

CMU PIE face database contains 68 subjects with 41,368 face images as a whole. The face 

images were captured under varying pose, illumination and expression. Similar to (Cai, He et al. 

2007), in the experiment, we choose the frontal pose (C27) with varying lighting which leaves us 

43 images per person. The size of each face image is cropped to have 32x32 pixels as shown in 

Fig. 3(top). 

                                                        
8 Here, support point denotes the face image which contributes to represent the given face image. 
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Extended Yale B database (Lee, Ho et al. 2005) contains 2414 front-view face images of 38 

individuals. For each individual, about 64 pictures were taken under various laboratory-controlled 

lighting conditions. In our experiments, we simply use the cropped images9 with the resolution of 

32x32 as shown in Fig. 3(middle). The database may be substantially more challenging than the 

above PIE database due to much larger illumination variations. 

AR database consists of over 4000 face images of 126 individuals. For each individual, 26 

pictures were taken in two sessions (separated by two weeks) and each section contains 13 images. 

These images include front view of faces with different expressions, illuminations and occlusions. 

In our experiments, we only use the images without occlusion in the AR face database provided 

and preprocessed by (Martinez and Kak 2001). This sub-dataset contains 1400 face images 

corresponding to 100 person (50 men and 50 women), where each person has 14 different images 

taken in two sessions. The original resolution of these image faces is 165x120. Here, for 

computational convenience, we resize them to 66x48 as shown in Fig. 3(bottom). 

 

 

  
Fig. 3 Some face images from PIE (top), Yale B (middle) and AR (bottom) databases. 

5.2.2 Experimental setting 

On each face database, we perform two groups of experiments with different unlabeled training 

sample numbers. Table 2 gives the specific experimental setting. For example, for PIE database, 

experiment 1 denotes that 3 images are randomly selected from each class as the training set, and 

the rest images as the testing set. Among the 3 training images, only 1 image is randomly selected 

and labeled, which leaves the rest 2 images unlabeled; while, in experiment 2, the labeled training 

samples keep the same, but the number of the total training samples per subject increases to 30. In 

fact, the experiment 2 is also considered in (Cai, He et al. 2007) where the authors justified that 

their proposed SDA algorithm achieved better performance than some popular algorithms, e.g. 

LPP (He and Niyogi 2003) and LapSVM (Belkin, Niyogi et al. 2006). For all the experiments here, 
                                                        
9 We directly download the cropped image data from http://www.cs.uiuc.edu/homes/dengcai2. 
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we report the averaged results over 30 random training/test splits. 

Table 2 Data set description and partition 

Experiment 1 Experiment 2 Database Sample sizes 
per class 

Class 
numbers Train Labeled Train Labeled 

PIE 64 68 3 1 30 1 
Yale B 43 38 3 1 30 1 
AR 14 100 3 1 10 1 

Based on each data partition, we compare SPDA with Baseline, unsupervised SPP, supervised 

LDA10 and semi-supervised SDA. The baseline approach denotes the 1NN classifier on the 

original face space without dimensionality reduction. For LDA, the face subspace is learnt only 

using the labeled samples; for SPP, the face subspace is learnt using all the training samples 

without label information; for SDA and SPDA, the face subspace is learnt using both labeled and 

unlabeled samples. Then, based on the learnt subspace, 1-NN classifier is employed to evaluate 

the recognition rate on the test data. As descript previously, SPDA suffers from high 

computational cost when a large number of unlabeled samples are considered. Therefore, for the 

experiment 2 on each database, we adopt the ensemble version of SPDA where the unlabeled 

samples are simply and randomly partitioned into q=10 small subsets. 

5.2.3 Parameter selection 

  LDA and SPP are both parameter-free. SDA contains 4 parameters: two regularized parameters 

and two free parameters for graph construction. Here, we use the same parameter values for SDA 

as in (Cai, He et al. 2007). For convenience of comparison, the two regularized parameters in 

SPDA are assigned the same values as in SDA. In addition, for all the above algorithms, the 

subspace dimension is set to c-1, where c is the class number. Table 3 gives specific parameter 

values for SDA and SPDA. 

Table 3. Parameter setting for SDA and SPDA 

Algorithms Reg. para. 1λ Reg. para. 2λ Neighbor k Edge weights 

SDA 0.01 0.1 2 Cosine 
SPDA 0.01 0.1 Auto Auto 

5.2.4 Experimental results and overall observations 

                                                        
10 Strictly speaking, under the single training sample case, typical LDA fails to work since the intra-class variation 
cannot be obtained. Here, we simply replace the intra-class scatter matrix using a constant matrix as in (Zhao, 
Chellappa et al. 1999). 
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  Based on the above experimental setting, table 4 reports the classification accuracies 

corresponding to different algorithms and databases, where E1 and E2 denote the first and second 

groups of experiments, respectively. 

Table 4 Performance comparison for single training image face recognition problem 

 Baseline (%) LDA (%) SPP (%) SDA (%) SPDA (%) 
E1 25.88 ± 1.2 25.88 ± 1.2 62.55 ± 2.0 30.91 ± 2.1 67.47 ± 1.8 

PIE 
E2 26.21 ± 1.6 26.21 ± 1.6 51.29 ± 3.1 59.57 ± 3.2 70.44 ± 3.0 
E1 12.60 ± 1.2 12.60 ± 1.2 17.95 ± 3.1 16.10 ± 1.6 31.27 ± 3.6 

Yale B 
E2 13.01 ± 1.4 13.01 ± 1.4 14.28 ± 3.2 26.77 ± 2.5 35.44 ± 3.3 
E1 24.55 ± 1.4 24.55 ± 1.4 44.57 ± 2.6 22.48 ± 1.6 58.46 ± 2.0 

AR 
E2 24.69 ± 2.4 24.69 ± 2.4 55.06 ± 3.1 26.22 ± 2.1 61.23 ± 2.5 

From the experimental results on the three popular face databases, we can achieve several 

observations as follows: 

1) Among the discussed dimensionality reduction methods, LDA generally achieve relatively 

low accuracies due to the fact that only one labeled sample per class is used to learning the 

face subspace. 

2) Despite its unsupervised nature, SPP can outperform LDA with the help of extra training 

samples. However, the performance of SPP does not always be improved with the increase of 

training samples. Interestingly, SPP can even achieve better performance than SDA in some 

of the experiments, which benefits from the natural discriminative power of sparse 

representation. 

3) Semi-supervised SDA and the proposed SPDA always outperform LDA if considerable 

unlabeled training samples are available. That is, the extra unlabeled training samples can 

generally help improve the performance. 

4) SPDA consistently outperforms SPP and SDA on all the used face databases. This illustrates 

both label information and well-constructed graph (or equivalently, data-dependent 

regularizer) play important roles in the ultimate recognition rates. More importantly, the 

proposed SPDA algorithm can remarkably improve the performance of LDA even when only 

few unlabeled training samples are available. 

6 Conclusion and future works 

In this paper, we developed a new semi-supervised dimensionality reduction method called 
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Sparsity Preserving Discriminant Analysis (SPDA). The newly proposed algorithm does not only 

model the “locality” automatically, but also remarkably improves the performance of typical LDA 

only resorting to very few additional unlabeled samples. As a result, SPDA algorithm is more 

applicable to face recognition problem with only a few training samples. 

From the experimental results, we can find that SPDA is more effective than the popular SDA 

algorithm, but has still a big gap from practical face recognition applications. Therefore, in the 

future work, we will attempt to integrate the typical strategies (e.g. synthesizing virtual samples, 

localizing the training images) with the proposed algorithm and expect to further improve the 

performance. 
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 Appendix: The formulation for sparsity preserving regularizer 
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