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ABSTRACT
Canonical correlation analysis (CCA) is one of the most well-
known methods to extract features from multi-view data
and has attracted much attention in recent years. However,
classical CCA is unsupervised and does not take class la-
bel information into account. In this paper, we introduce
the within-class cross correlation into CCA and propose a
new method called canonical Random Correlation Analy-
sis (RCA). In RCA, besides considering the correlation be-
tween two views from the same sample, the cross correlations
between two views respectively from different within-class
samples are also used to achieve good performance. Two
approaches for randomly generating cross correlation sam-
ples are developed.
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1. INTRODUCTION
In many applications data can be described by multiple

sets of features. One of advantages of using multi-view data
in classification is that different and complementary infor-
mation contained in respective group of features can be used.
Canonical correlation analysis (CCA) [2], is the most well-
known two view-based method. CCA seeks to find two sets
of directions, one for each set. Related features are extracted
through maximizing the correlation between the two set of
canonical variables.
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CCA is inherently an unsupervised method and the label
information can not be utilized in CCA, which limits its clas-
sification performance in practice. In this paper, we attempt
to incorporate label information into CCA and propose a
simple feature extraction method based on CCA, named
canonical Random Correlation Analysis (RCA). RCA is based
on the observation that an example is more related to the
examples belonging to the same class than those belonging
to different classes. For that goal, we introduce the idea of
cross correlation [1] into CCA. In this study, we extend it
to estimate the correlation relationships between two sets of
examples falling into multiple classes. In RCA, within-class
cross correlation is used to extract discriminative informa-
tion. Two approaches are developed to produce within-class
cross correlations, called RCA-I and RCA-II respectively.
Both approaches generate cross correlation randomly except
there are some constraints imposed on RCA-II. A smaller
cross correlation set are needed in RCA-II than in RCA-I.

Figure 1: In RCA not only correlated features
are extracted, but also discriminative information
among various classes can be retained

2. CANONICAL RANDOM CORRELATION
ANALYSIS

2.1 Sample Cross Correlation
Cross correlation is a standard method of measuring sim-

ilarity of two time series. Borrowing idea from the standard
cross correlation, not rigorously, we define sample cross cor-
relation as
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where (xi, yi) ∈ S is centered observations, and each sum
term xiy

T
j is referred to as a cross correlation term, or cor-
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relation term for short. Now we can extend CCA to new
canonical cross-correlation analysis as
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2.2 RCA Algorithm
Suppose all samples fall into c classes {ωk}c

k=1, and Xk,

Yk are the jth subset of training data. Let X̃k and Ỹk denote
the jth subset in final correlation term set. Two approaches

are developed to determine X̃k and Ỹk.
In RCA-I, we sample Xk and Yk with replacement to form

corresponding X̃k and Ỹk. In RCA-II, only the second view
Y is considered to be sampled and the first view is kept

unchanged, i.e. X̃k = Xk. X̃k and Ỹk have the same size
as Xk and Yk. The process can be repeated t times. As a

result, t sets are generated, denoted as X̃ (l)
k , Ỹ(l)

k , l = 1 . . . t.
Some correlation terms in the set may occur several times
and the frequencies are defined as their weights. RCA (for
both RCA-I and II) can be formulated as
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Let X,Y denote data matrices of X and Y. A indication
matrix Rcorr ∈ Rn×n is constructed to represent cross cor-
relations, where n is the size of data set. The (i, j) entry
of Rcorr corresponds to the weight of the cross correlation
term xiy

T
j . Now, RCA (both I and II) can be rewritten as

arg max
ωx,ωy

ωT
x XRY T ωy (4)

where R = Rcorr + RT
corr is set to guarantee symmetry of

the correlation relationships, which implies that all symmet-
ric terms are taken into account automatically to reinforce
correlated relation further. The optimization problem can
be solved by following eigenvalue decomposition,[

XRY T

Y RXT

] [
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]
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[
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] [
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]
(5)

The algorithm of RCA is summarized in Table 1.

3. EXPERIMENTS
We evaluate the classification performances of the meth-

ods RCA-I and RCA-II on Multiple Features data set picked
out from UCI repository. We compare our methods with
several related algorithms, e.g. CCA, partial least square
(PLS) [4], locality preserving CCA (LPCCA) [3]. The re-
sults on the data set are shown in Table 2. The first two
columns in the table correspond all fifteen combinations of
six views, i.e. Fac, Fou, Kar, Mor, Pix, Zer.

4. CONCLUSION
In this paper, we attempt to introduce label information

into the CCA to obtain better class separation. The no-
tion of cross correlation has been proven to be an effective
method. We propose to choose a set of cross correlation

Table 1: The Algorithm of RCA

Inputs: Training data X =
⋃c

k=1 Xk, Y =
⋃c

k=1 Yk,
The number of correlation term set t,
The dimension of canonical subspace d,

Begin: Initialize Rcorr = (0)n×n;
For l = 1 To t Do

Let X̃ (l) = Ø, Ỹ(l) = Ø;
for k = 1 To c Do

Construct lth set X̃ (l)
k , Ỹ(l)

k from Xk

and Yk through the RCA-I or II;

Set X̃ (l) = X̃ (l) ∪ X̃ (l)
k , Ỹ(l) = Ỹ(l) ∪ Ỹ(l)

k ;

Fill Rcorr according to X̃ (l) and Ỹ(l);
Set R = Rcorr + RT

corr;
Solve Eq. (5);

Output: Wx = [ωx1 · · ·ωxd ] and Wy = [ωy1 · · ·ωyd ].

Table 2: Recognition Rates on Multiple Features

Data CCA PLS LPCCA RCA-I RCA-II
Fac Fou 0.8663 0.9353 0.9049 0.9544 0.9560
Fac Kar 0.9588 0.9365 0.9667 0.9750 0.9768
Fac Mor 0.7516 0.8661 0.7835 0.8844 0.8696
Fac Pix 0.9451 0.9400 0.9554 0.9732 0.9748
Fac Zer 0.8435 0.9476 0.8725 0.9559 0.9547
Fou Kar 0.8894 0.9714 0.9299 0.9349 0.9427
Fou Mor 0.7559 0.4343 0.7326 0.8110 0.8100
Fou Pix 0.8234 0.9742 0.8117 0.9288 0.9359
Fou Zer 0.8246 0.8062 0.8308 0.8419 0.8435
Kar Mor 0.7806 0.6256 0.8271 0.8858 0.8645
Kar Pix 0.9608 0.9728 0.9702 0.9478 0.9512
Kar Zer 0.8811 0.8163 0.9454 0.9368 0.9414
Mor Pix 0.7263 0.7053 0.7369 0.8556 0.8310
Mor Pix 0.7256 0.6919 0.7139 0.7881 0.7865
Pix Zer 0.8209 0.8261 0.8787 0.9250 0.9239

terms within every class to form correlation term set on
which CCA process is performed. Two simple and easy-to-
do methods are developed to form the correlation term set.
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