
Cost-Sensitive Feature Selection with Application in

Software Defect Prediction

Linsong Miao, Mingxia Liu and Daoqiang Zhang
*

Department of Computer Science and Engineering, Nanjing University of Aeronautics &

Astronautics, Nanjing 210016, China
*
E-mail Address: {linsongmiao, mingxialiu, dqzhang }@nuaa.edu.cn

Abstract
In many real-world applications, different mis-

classification errors will cause different costs.

However, cost-sensitive learning only applied in

classification phase and not in the feature selection

phase to address this problem. In this paper, we study

cost-sensitive feature selection and propose a

framework which incorporates a cost matrix into

traditional feature selection methods. And we

developed three corresponding methods, namely,

Cost-Sensitive Variance Score (CSVS), Cost-Sensitive

Laplacian Score (CSLS), Cost-Sensitive Constraint

Score (CSCS). Experiments on real software defect

prediction benchmark data sets demonstrate that cost-

sensitive feature selection methods are more efficacy

than traditional ones in reducing the total cost.

1. Introduction
 Machine learning techniques have been applied to

construct prediction models for software defect

prediction for many years [1]. However, with the

growth in size and complexity of modern large

software systems, learning a software defect predictor

will have to face amounts of high-dimensional data.

Thus, feature selection is first required to find the

appropriate feature subset before learning the software

defect prediction model.

Traditional feature selection [2][3][4] attempts to

attain low classification errors instead of low costs.

However, in software defect prediction, misclassifying

a defect-prone module will cause higher cost than

misclassifying a not-defect-prone module.

Consequently, traditional feature selection is not

suitable to reduce the total cost in software defect

prediction. Traditional feature selection also does not

consider the imbalance problem since they assign the

same weighting to samples from different classes

when the samples are used to evaluate each feature.

However, data sets in software defect prediction are

imbalanced. Over the past decade, cost-sensitive

learning has been applied to reduce the total cost and

address the imbalanced problem [5] [6]. However,

these methods only apply the cost-sensitive learning

methods in classification phase and not in feature

selection phase.

To deal with the scenarios where different mis-

classification cause different costs and the data sets are

imbalanced in feature selection phase, we propose a

framework which incorporates a cost matrix into

traditional feature selection methods and developed

three corresponding methods, namely, Cost-Sensitive

Variance Score (CSVS), Cost-Sensitive Laplacian

Score (CSLS), Cost-Sensitive Constraint Score

(CSCS). Three cost-sensitive feature selection

methods combine the cost information (cost matrix) in

three traditional feature selection methods in the way

of emphasizing the samples with higher costs and

deemphasizing the samples with lower costs in the

feature selection phase. Different from traditional

feature selection, we argue that cost-sensitive feature

selection can address the imbalance problem in the

phase of feature selection in the way similar to cost-

sensitive learning, which address imbalance problem

in the phase of learning. And also, cost-sensitive

feature selection aims to attain low cost instead of low

errors. Experimental results validate the effectiveness

and deficiency of the proposed methods.

2.Cost-Sensitive Feature Selection
2.1. Analysis

Assume that there are all c classes. Without loss of

generality, we assume that misclassifying a sample of

i-th class ({1, ..., 1}i c ) to the c-th class will

cause higher cost than misclassifying a sample of the

c-th class to other classes. Here, we call the class from

1-th class to (c-1)-th class ‘in-group’ class, while the

c-th class is called as ‘out-group’ class. As analyzed

above, we divide the costs into three types:

1) Cost of false acceptance COI: cost of

misclassifying ‘out-group’ class as ‘in-group’

class

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 967

2) Cost of false rejection CIO: cost of misclassifying

‘in-group’ class as ‘out-group’ class

3) Cost of false identification CII: cost of

misclassifying one ‘in-group’ class as another

‘in-group’ class.

 Following [7], we assign COI=COI/CII, CIO=CIO/CII,

and CII=1 with result unchanged. According to

common sense, we assume that accepting any ‘out-

group’ class will cause the same cost, and

misclassifying a ‘in-group’ class as another ‘in-group’

class or ‘out-group’ class will cause different cost. Let

cost(i, j) (, {1, ..., }i j c) denote the cost of

misclassifying an example of the i-th class to the j-th

class. The class label of sample Xi is assumed to be

1 1
{ , ..., , }

i C
l I I O


 , where Ij (j=1, …, c-1) is the ‘in-

group’ class and O is the ‘out-group’ class. Then, we

can construct the cost matrix C, which is shown in

Table I. In this paper, we propose the cost matrix

should be set to be given by users.

Table 1. Cost Matrix

 I1 … IC-1 O

I1 0 … CII CIO

… … … … …

IC-1 CII … 0 CIO

O COI … COI 0

2.2.CSVS
As in [7] [8], we define the function f(k) to describe

the importance of the k-th class, where 1 k c  . The

function f(k) is computed as follows:

(2) 1, 2, ... 1
()

(1)

II IO

O I

c C C if k c
f k

c C otherw ise

     


 
 (1)

Where c is the number of classes, CII, CIO, COI are

defined as above. Eq (1) denotes that the larger is the

cost of the k-th class, the larger is the value of the f(k).

According to Variance feature selection method, we

should select the features with maximum variance. In

this paper, we also assume that, a “good” feature

should the one on which the variance of ‘out-group’

class is as larger as possible than the variance of ‘in-

group’ classes. Thus, the cost-sensitive variance of r-th

feature is computed as follows:

2

1

1

2

1 1

1
()()

1
()()

c

i

n

ri r

ic

r nc

rj r

i ji

f c f
n

V

f i f
n









 









 
 (2)

Where ni is the samples number of i-th class (

1 i c ). fri denote the r-th feature of the i-th sample

Xi, i=1,…,m; r=1,…,n. Define 1
r rii

f
m

   . f(i) is the

important function. In Eq. (2), we use f(i) to weight

the classes, in such way the variance of different class

is weighted at the same time.

2.3.CSLS
Let yi denote the class label of sample xi. Similar to

Laplacian Score, the cost-sensitive laplacian score Lr

of the r-th feature, which should be minimized, is

defined as follows:
2 2

,
[cos (,)]() ()()

r i j ri rj ij ri r iii j i
L t y y f f S f i f D       (3)

Where cost(yi, yj) can be easily obtained from the cost

matrix, which is shown in Table I. D is a diagonal

matrix with
ii ijj

D S  , and Sij, which reflect the

neighborhood relationship between sample Xi

(i=1,…,m), is defined as follows [3]:
2

|| ||

,

0,

i jX X

t

i j
ij

e if X and X are neighborsS

otherwise




       
 

 (4)

Where t is a constant to be set, and ‘Xi and Xj are

neighbors’ means that either Xi is among k nearest

neighbors of Xi, or Xj is among k nearest neighbors of

Xi. There is a regularization coefficient  , which is

used to balance the contribution of the two terms in

Eq.(3). Since f(i) is usually larger than cost(yi, yj), we

set 1  in this paper.

2.4.CSCS
Given a set of samples X=[x1, x2, … , xm], we can

utilize its pairwise must-link constraints M={(xi, xj)|

xi and xj belong to the same class} and pairwise

cannot-link constraints C={(xi, xj)| xi and xj belong to

the different class} as the supervision information. The

cost-sensitive constraint score of Cr, which should be

minimized, is defined as follows:

2

()

2

()

cos (,)()

()()

i j

i j

r i j ri rjx x M

i ri rjx x C

C t y y f f

f y f f

 

 

  

 





(5)

Where C is sets of pairwise cannot-link constraints

and M is sets of pairwise must-link constraints.  is a

regularization coefficient, which is used to balance the

two terms in Eq.(5).
3. Experiments

In this section, several experiments were carried out

on NASA MDP data sets to demonstrate the efficiency

and effectiveness of our algorithms.

3.1. Experimental Design
Seven software defect prediction sets, CM1, KC3,

MW1, PC1, PC2, PC3 and PC4 [9], are studied in this

paper. We take pre-processing for each data set as in

[10]. LIbSVM, an open source library for SVM

experimentation, are used to classify the data after

feature selection. A ten-fold cross-validation is used in

the experiment, the final performance estimation is

obtained from averaging of the results of the tenfold.

968

Table 2 Comparison on Total-Cost, Sensitivity, Accuracy, Specificity on the MDP Datasets
(the numbers in the bracket represent the optimal features)

Mehtod Feature Selecion+SVM Baseline

 VS CSVS LS CSLS CS CSCS SVM

CM1 Cost 83.5(38) 63.3(5) 87.4(38) 71.1(31) 85.7(16) 64.8(13) 90.65

Accuracy (%) 87.81 90.52 87.59 90.09 87.26 91.33 85.59

Sensitivity(%) 95.50 96.53 96.22 97.03 95.41 97.84 94.00

Specificity(%) 48.75 62.24 45.80 57.23 48.84 59.91 45.29

KC3 Cost 28.7(31) 22.8(9) 36.4(39) 23.2(15) 32.4(36) 16.6(12) 36.58

Accuracy (%) 94.1 94.8 93.57 93.24 94.54 96.14 93.98

Sensitivity(%) 97.65 97.31 98.69 95.93 98.69 98.00 98.68

Specificity(%) 58.64 73.64 38.64 65.45 52.73 80.45 48.77

MW1 Cost 22.4(30) 0.4(2) 36.1(34) 15.1(12) 20.5(9) 4.5(10) 29.56

Accuracy (%) 96.21 98.92 95.33 95.27 96.21 98.11 95.59

Sensitivity(%) 98.86 98.86 99.71 96.86 98.57 98.57 98.97

Specificity(%) 51.11 100 37.22 72.78 65.56 90.00 56.55

PC1 Cost 34(27) 2.0(1) 39.6(38) 18.7(12) 39.9(32) 10.2(7) 45.53

Accuracy (%) 96.27 99.89 96.40 98.35 96.39 99.30 96.54

Sensitivity(%) 97.75 100 98.20 99.21 97.87 99.78 98.73

Specificity(%) 79.05 98.33 75.95 88.81 80.00 95.49 70.23

PC2 Cost 14.3(29) 0.1(2) 12.2(29) 6.1(11) 10(16) 0.1(1) 22.02

Accuracy (%) 99.30 99.93 99.43 99.72 99.65 99.72 98.93

Sensitivity(%) 99.78 99.93 99.86 99.93 100 99.93 99.69

Specificity(%) 72.50 100 75.00 87.50 80.00 87.50 50.75

PC3 Cost 105.7(26) 0(1) 119.9(30) 19.6(11) 92.2(15) 17.7(11) 119.21

Accuracy (%) 90.13 100 89.30 98.32 92.74 98.27 88.59

Sensitivity(%) 92.71 100 92.30 98.76 95.19 98.68 91.43

Specificity(%) 68.57 100 62.18 94.7 72.46 95.09 64.83

PC4 Cost 79.5(29) 0(2) 83.7(34) 44.1(11) 93.7(27) 30(15) 91.01

Accuracy (%) 96.07 100 94.31 96.89 93.96 97.46 94.64

Sensitivity(%) 98.74 100 96.83 98.20 96.85 98.28 97.58

Specificity(%) 78.95 100 78.01 88.33 75.07 92.11 75.51

(a) (b) (c) (d)

Fig. 1.Total cost vs. different value of lambda in Cost-Sensitive Laplacian Score and Cost-
Sensitive Constraint Score on 4 MDP data sets (a) CM1 (b)KC3 (c)MW1 (d)PC1

(a) (b) (c) (d)

Fig. 2.Total cost vs. different cost ratios in Cost-Sensitive Laplacian Score and Cost-Sensitive
Constraint Score on 4 MDP data sets (a) CM1 (b)KC3 (c)MW1 (d)PC1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

60

65

70

75

80

85

90

Value of lambda

T
o

ta
l-

C
o

s
t

CM1

CSLS

CSCS

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

15

20

25

30

35

40

45

Value of lambda

T
o

ta
l-

C
o

s
t

KC3

CSLS

CSCS

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

30

35

40

Value of lambda

T
o

ta
l-

C
o

s
t

MW1

CSLS

CSCS

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10

15

20

25

30

35

40

45

Value of lambda

T
o

ta
l-

C
o

s
t

PC1

CSLS

CSCS

1 2 4 8 16 32 64
0

50

100

150

200

250

C
OI

/C
IO

T
o

ta
l-

C
o

s
t

CM1

CSVariance

CSLS

CSCS

1 2 4 8 16 32 64
0

20

40

60

80

100

120

C
OI

/C
IO

T
o

ta
l-

C
o

s
t

KC3

CSVariance

CSLS

CSCS

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

45

50

C
OI

/C
IO

T
o

ta
l-

C
o

s
t

MW1

CSVariance

CSLS

CSCS

1 2 4 8 16 32 64
0

10

20

30

40

50

60

C
OI

/C
IO

T
o

ta
l-

C
o

s
t

PC1

CSVariance

CSLS

CSCS

969

The parameter in Eq. (3) and Eq. (4) is always set to

10
-4

, 0.8 separately, if without extra explanations. For

each data set, a total of 100 pairwise constraints

including 50 must-link and 50 cannot-link constraints

are used in Constraint Score and its cost-sensitive

variants [11]. CIO is fixed as 1, and CII, COI are set to 2,

20 separately in this study.

3.2. Experimental Results
In Table 2, we record the lowest cost of three

algorithms after optimal dimensions are selected.

Accuracy, sensitivity, specificity and the numbers of

optimal dimensions are also recorded in Table 2 at the

same times. From Table 2, we can find that the cost-

sensitive methods achieve smaller total cost than their

traditional counterparts in the best performance. And

we also find that cost-sensitive methods need less

features to achieve the best performance. It is evident

that the cost-sensitive methods have larger sensitivity

than their traditional counterparts. The larger

sensitivity of cost-sensitive feature selection methods

demonstrates the efficacy of cost-sensitive feature

selection methods on imbalance datasets. The larger

sensitivity indicates that cost-sensitive methods attain

small total cost by preventing high-cost errors (error of

false acceptance). All this demonstrates that cost-

sensitive feature selection methods performance better

than their traditional counterparts.

3.3. Discussion
First, we study the performance of cost-sensitive

Laplacian Score and cost-sensitive Constraint Score

with different value of the parameter  . Fig.1 plots

the total cost vs.  values on four MDP data sets.

From Fig.1, we can find that the different value of 

will lead to different cost for CSLS. However, we can

find that the performance of CSCS has not been

improved with the  changed and the reason is that

the first term in Eq. (5) is more important than first

term for real software defect prediction benchmark

data sets.

Then, we study the influence of the cost ratios on

the performance of three cost-sensitive feature

selection algorithms. Here, we study the adaptation of

the cost-sensitive feature selection algorithm to

different cost ratios. First, we set CIO as 1. Then we

select COI/CIO from {1, 2, 4, 8, 16, 32, 64}. The results

of three cost-sensitive feature selection algorithms are

shown in Fig.2. In Fig.2, the cost ratio axes in log-

scale for a better plot. Note that in the experiments,

although COI increases exponentially, the total cost of

three cost-sensitive methods do not increase

exponentially. The reason is that the cost-sensitive

feature selection methods control the total cost via

selecting the features, which tends to reduce the high-

cost errors of false acceptance. Thus, we can use

cross-validation to balance the cost and accuracy in

practical applications.

4. Conclusion
In this paper, we propose a cost-sensitive feature

selection framework and develop three cost-sensitive

feature selection algorithms, i.e., CSVS, CSLS, CSCS,

which consider unequal misclassification costs and

imbalance problem simultaneously in feature selection

phase. Compared with traditional feature selection,

cost-sensitive feature selection aim to minimize the

total cost rather than the total error rate. Experimental

results on public datasets show that cost-sensitive

feature selection has better performance in reducing

costs and addressing imbalance problem than

traditional feature selection. In the experiments above,

the cost matrix is given by users. Learning cost matrix

from specific dataset is an interesting future issue.

References
[1] J. Zheng,”Cost-Sensitive Boosting Neural Network for

Software Defect Prediction,” Expert Systems with
Applications, vol. 37, pp. 4537-4543, 2010.

[2] C. M. Bishop, “Neural Networks for Pattern Recognition,”
Oxford University Press. 1995

[3] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature
selection,” In: Advances in Neural Information Processing
Systems, MIT Press, Cambridge, MA, 2005, pp. 507-514.

[4] D. Zhang, S. Chen, and Z. Zhou, “Constraint Score: A new
filter method for feature selection with pairwise constraints,”
Pattern Recognition, vol. 41(5), pp. 1440-1451, 2008.

[5] Y. Zhang, and Z. H. Zhou, “Cost-sensitive face recognition,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32(10), pp. 1758-1769, 2010.

[6] Z. H. Zhou, and X. Y. Liu, “Training cost-sensitive neural
networks with methods addressing the class imbalance
problem,” IEEE Transaction on Knowledge and Data
Engineering, 2005.

[7] Z. H. Zhou, and X. Y. Liu, “On multi-class cost-sensitive
learning,” Proc. 21st National Conf. Artificial Intelligence
(AAAI'06), Boston, MA, pp. 567-572, 2006.

[8] J. Lu, and Y. P. Tan, “Cost-Sensitive Subspace Learning for
Face Recognition,” IEEE Conf. Computer Vision and Pattern
Recognition, (IEEE CVPR’2010), 2010.

[9] M. Chapman, P. Callis, and W. Jackson, "Metrics Data
Program. NASA IV and V Facility," http:,, mdp.ivv.nasa.gov/,
2004.

[10] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“Using the Support Vector Machine as a Classification Method
for Software Defect Prediction with Static Code Metrics,”
Engineering Applications of Neural Networks,vol. 43, pp. 223-
23,2009.

[11] D. Sun, and D.Q. Zhang, “Bagging Constraint Score for feature
selection with pairwise constraints,” Pattern Recognition, vol.
43(6), pp. 2106-2118, 2010.

970

