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Abstract 
In many real-world applications, different mis-

classification errors will cause different costs. 

However, cost-sensitive learning only applied in 

classification phase and not in the feature selection 

phase to address this problem. In this paper, we study 

cost-sensitive feature selection and propose a 

framework which incorporates a cost matrix into 

traditional feature selection methods. And we 

developed three corresponding methods, namely, 

Cost-Sensitive Variance Score (CSVS), Cost-Sensitive 

Laplacian Score (CSLS), Cost-Sensitive Constraint 

Score (CSCS). Experiments on real software defect 

prediction benchmark data sets demonstrate that cost-

sensitive feature selection methods are more efficacy 

than traditional ones in reducing the total cost. 

 

1. Introduction 
   Machine learning techniques have been applied to 

construct prediction models for software defect 

prediction for many years [1]. However, with the 

growth in size and complexity of modern large 

software systems, learning a software defect predictor 

will have to face amounts of high-dimensional data. 

Thus, feature selection is first required to find the 

appropriate feature subset before learning the software 

defect prediction model.  

Traditional feature selection [2][3][4] attempts to 

attain low classification errors instead of low costs. 

However, in software defect prediction, misclassifying 

a defect-prone module will cause higher cost than 

misclassifying a not-defect-prone module. 

Consequently, traditional feature selection is not 

suitable to reduce the total cost in software defect 

prediction. Traditional feature selection also does not 

consider the imbalance problem since they assign the 

same weighting to samples from different classes 

when the samples are used to evaluate each feature. 

However, data sets in software defect prediction are 

imbalanced. Over the past decade, cost-sensitive 

learning has been applied to reduce the total cost and 

address the imbalanced problem [5] [6]. However, 

these methods only apply the cost-sensitive learning 

methods in classification phase and not in feature 

selection phase.  

To deal with the scenarios where different mis-

classification cause different costs and the data sets are 

imbalanced in feature selection phase, we propose a 

framework which incorporates a cost matrix into 

traditional feature selection methods and developed 

three corresponding methods, namely, Cost-Sensitive 

Variance Score (CSVS), Cost-Sensitive Laplacian 

Score (CSLS), Cost-Sensitive Constraint Score 

(CSCS). Three cost-sensitive feature selection 

methods combine the cost information (cost matrix) in 

three traditional feature selection methods in the way 

of emphasizing the samples with higher costs and 

deemphasizing the samples with lower costs in the 

feature selection phase. Different from traditional 

feature selection, we argue that cost-sensitive feature 

selection can address the imbalance problem in the 

phase of feature selection in the way similar to cost-

sensitive learning, which address imbalance problem 

in the phase of learning. And also, cost-sensitive 

feature selection aims to attain low cost instead of low 

errors. Experimental results validate the effectiveness 

and deficiency of the proposed methods.  

2.Cost-Sensitive Feature Selection 
2.1. Analysis  

Assume that there are all c classes. Without loss of 

generality, we assume that misclassifying a sample of 

i-th class ( {1, ..., 1}i c  ) to the c-th class will 

cause higher cost than misclassifying a sample of the 

c-th class to other classes. Here, we call the class from 

1-th class to (c-1)-th class ‘in-group’ class, while the 

c-th class is called as ‘out-group’ class. As analyzed 

above, we divide the costs into three types: 

1) Cost of false acceptance COI: cost of 

misclassifying ‘out-group’ class as ‘in-group’ 

class 
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2) Cost of false rejection CIO:  cost of misclassifying 

‘in-group’ class as ‘out-group’ class 

3) Cost of false identification CII: cost of 

misclassifying one ‘in-group’ class as another 

‘in-group’ class. 

 Following [7], we assign COI=COI/CII, CIO=CIO/CII, 

and CII=1 with result unchanged. According to 

common sense, we assume that accepting any ‘out-

group’ class will cause the same cost, and 

misclassifying a ‘in-group’ class as another ‘in-group’ 

class or ‘out-group’ class will cause different cost. Let 

cost(i, j) ( , {1, ..., }i j c ) denote the cost of 

misclassifying an example of the i-th class to the j-th 

class. The class label of sample Xi is assumed to be 

1 1
{ , ..., , }

i C
l I I O


 , where Ij (j=1, …, c-1) is the ‘in-

group’ class and O is the ‘out-group’ class. Then, we 

can construct the cost matrix C, which is shown in 

Table I. In this paper, we propose the cost matrix 

should be set to be given by users. 

Table 1. Cost Matrix 

  I1 … IC-1  O 

I1 0 … CII CIO 

… … … … … 

IC-1 CII … 0 CIO 

O COI … COI 0 

2.2.CSVS 
As in [7] [8], we define the function f(k) to describe 

the importance of the k-th class, where 1 k c  . The 

function f(k) is computed as follows: 

( 2) 1, 2, ... 1
( )

( 1)

II IO

O I

c C C if k c
f k

c C otherw ise

     


 
          (1) 

Where c is the number of classes, CII, CIO, COI are 

defined as above. Eq (1) denotes that the larger is the 

cost of the k-th class, the larger is the value of the f(k). 

According to Variance feature selection method, we 

should select the features with maximum variance. In 

this paper, we also assume that, a “good” feature 

should the one on which the variance of ‘out-group’ 

class is as larger as possible than the variance of ‘in-

group’ classes. Thus, the cost-sensitive variance of r-th 

feature is computed as follows:  
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Where ni is the samples number of i-th class (

1 i c  ). fri denote the r-th feature of the i-th sample 

Xi, i=1,…,m; r=1,…,n. Define 1
r rii

f
m

   . f(i) is the 

important function. In Eq. (2), we use f(i) to weight 

the classes, in such way the variance of different class 

is weighted at the same time. 

2.3.CSLS 
Let yi denote the class label of sample xi. Similar to 

Laplacian Score, the cost-sensitive laplacian score Lr 

of the r-th feature, which should be minimized, is 

defined as follows: 
2 2

,
[ cos ( , )]( ) ( )( )

r i j ri rj ij ri r iii j i
L t y y f f S f i f D          (3)                                                     

Where cost(yi, yj) can be easily obtained from the cost 

matrix, which is shown in Table I. D is a diagonal 

matrix with 
ii ijj

D S  , and Sij, which reflect the 

neighborhood relationship between sample Xi 

(i=1,…,m), is defined as follows [3]: 
2

|| ||

,

0,

i jX X

t

i j
ij

e if X and X are neighborsS

otherwise



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          (4) 

Where t is a constant to be set, and ‘Xi and Xj are 

neighbors’ means that either Xi is among k nearest 

neighbors of Xi, or Xj is among k nearest neighbors of 

Xi. There is a regularization coefficient  , which is 

used to balance the contribution of the two terms in 

Eq.(3). Since f(i) is usually larger than cost(yi, yj), we 

set 1   in this paper. 

2.4.CSCS 
Given a set of samples X=[x1, x2, … , xm], we can 

utilize its pairwise must-link constraints M={(xi, xj )| 

xi and xj belong to the same class} and pairwise 

cannot-link constraints C={(xi, xj )| xi and xj belong to 

the different class} as the supervision information. The 

cost-sensitive constraint score of Cr, which should be 

minimized, is defined as follows: 

                

2
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2
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(5) 

Where C is sets of pairwise cannot-link constraints 

and M is sets of pairwise must-link constraints.   is a 

regularization coefficient, which is used to balance the 

two terms in Eq.(5).  
3. Experiments 

In this section, several experiments were carried out 

on NASA MDP data sets to demonstrate the efficiency 

and effectiveness of our algorithms. 

3.1. Experimental Design 
Seven software defect prediction sets, CM1, KC3, 

MW1, PC1, PC2, PC3 and PC4 [9], are studied in this 

paper. We take pre-processing for each data set as in 

[10]. LIbSVM, an open source library for SVM 

experimentation, are used to classify the data after 

feature selection. A ten-fold cross-validation is used in 

the experiment, the final performance estimation is 

obtained from averaging of the results of the tenfold. 
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Table 2 Comparison on Total-Cost, Sensitivity, Accuracy, Specificity on the MDP Datasets   
(the numbers in the bracket represent the optimal features) 

Mehtod Feature Selecion+SVM Baseline 

 VS CSVS LS CSLS CS CSCS SVM 

CM1 Cost 83.5(38) 63.3(5) 87.4(38) 71.1(31) 85.7(16) 64.8(13) 90.65 

Accuracy (%) 87.81 90.52 87.59 90.09 87.26 91.33 85.59 

Sensitivity(%) 95.50 96.53 96.22 97.03 95.41 97.84 94.00 

Specificity(%) 48.75 62.24 45.80 57.23 48.84 59.91 45.29 

KC3 Cost 28.7(31) 22.8(9) 36.4(39) 23.2(15) 32.4(36) 16.6(12) 36.58 

Accuracy (%) 94.1 94.8 93.57 93.24 94.54 96.14 93.98 

Sensitivity(%) 97.65 97.31 98.69 95.93 98.69 98.00 98.68 

Specificity(%) 58.64 73.64 38.64 65.45 52.73 80.45 48.77 

MW1 Cost 22.4(30) 0.4(2) 36.1(34) 15.1(12) 20.5(9) 4.5(10) 29.56 

Accuracy (%) 96.21 98.92 95.33 95.27 96.21 98.11 95.59 

Sensitivity(%) 98.86 98.86 99.71 96.86 98.57 98.57 98.97 

Specificity(%) 51.11 100 37.22 72.78 65.56 90.00 56.55 

PC1 Cost 34(27) 2.0(1) 39.6(38) 18.7(12) 39.9(32) 10.2(7) 45.53 

Accuracy (%) 96.27 99.89 96.40 98.35 96.39 99.30 96.54 

Sensitivity(%) 97.75 100 98.20 99.21 97.87 99.78 98.73 

Specificity(%) 79.05 98.33 75.95 88.81 80.00 95.49 70.23 

PC2 Cost 14.3(29) 0.1(2) 12.2(29) 6.1(11) 10(16) 0.1(1) 22.02 

Accuracy (%) 99.30 99.93 99.43 99.72 99.65 99.72 98.93 

Sensitivity(%) 99.78 99.93 99.86 99.93 100 99.93 99.69 

Specificity(%) 72.50 100 75.00 87.50 80.00 87.50 50.75 

PC3 Cost 105.7(26) 0(1) 119.9(30) 19.6(11) 92.2(15) 17.7(11) 119.21 

Accuracy (%) 90.13 100 89.30 98.32 92.74 98.27 88.59 

Sensitivity(%) 92.71 100 92.30 98.76 95.19 98.68 91.43 

Specificity(%) 68.57 100 62.18 94.7 72.46 95.09 64.83 

PC4 Cost 79.5(29) 0(2) 83.7(34) 44.1(11) 93.7(27) 30(15) 91.01 

Accuracy (%) 96.07 100 94.31 96.89 93.96 97.46 94.64 

Sensitivity(%) 98.74 100 96.83 98.20 96.85 98.28 97.58 

Specificity(%) 78.95 100 78.01 88.33 75.07 92.11 75.51 

 

           
(a)                               (b)                                   (c)                                     (d) 

Fig. 1.Total cost vs. different value of lambda in Cost-Sensitive Laplacian Score and Cost-
Sensitive Constraint Score on 4 MDP data sets (a) CM1 (b)KC3 (c)MW1 (d)PC1 

 

              
(a)                                   (b)                                  (c)                                   (d) 

Fig. 2.Total cost vs. different cost ratios in Cost-Sensitive Laplacian Score and Cost-Sensitive 
Constraint Score on 4 MDP data sets (a) CM1 (b)KC3 (c)MW1 (d)PC1 
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The parameter in Eq. (3) and Eq. (4) is always set to 

10
-4

, 0.8 separately, if without extra explanations. For 

each data set, a total of 100 pairwise constraints 

including 50 must-link and 50 cannot-link constraints 

are used in Constraint Score and its cost-sensitive 

variants [11]. CIO is fixed as 1, and CII, COI are set to 2, 

20 separately in this study. 

3.2. Experimental Results 
In Table 2, we record the lowest cost of three 

algorithms after optimal dimensions are selected. 

Accuracy, sensitivity, specificity and the numbers of 

optimal dimensions are also recorded in Table 2 at the 

same times. From Table 2, we can find that the cost-

sensitive methods achieve smaller total cost than their 

traditional counterparts in the best performance. And 

we also find that cost-sensitive methods need less 

features to achieve the best performance. It is evident 

that the cost-sensitive methods have larger sensitivity 

than their traditional counterparts. The larger 

sensitivity of cost-sensitive feature selection methods 

demonstrates the efficacy of cost-sensitive feature 

selection methods on imbalance datasets. The larger 

sensitivity indicates that cost-sensitive methods attain 

small total cost by preventing high-cost errors (error of 

false acceptance). All this demonstrates that cost-

sensitive feature selection methods performance better 

than their traditional counterparts. 

3.3. Discussion 
First, we study the performance of cost-sensitive 

Laplacian Score and cost-sensitive Constraint Score 

with different value of the parameter  . Fig.1 plots 

the total cost vs.   values on four MDP data sets. 

From Fig.1, we can find that the different value of   

will lead to different cost for CSLS. However, we can 

find that the performance of CSCS has not been 

improved with the  changed and the reason is that 

the first term in Eq. (5) is more important than first 

term for real software defect prediction benchmark 

data sets.  

Then, we study the influence of the cost ratios on 

the performance of three cost-sensitive feature 

selection algorithms. Here, we study the adaptation of 

the cost-sensitive feature selection algorithm to 

different cost ratios. First, we set CIO as 1. Then we 

select COI/CIO from {1, 2, 4, 8, 16, 32, 64}. The results 

of three cost-sensitive feature selection algorithms are 

shown in Fig.2. In Fig.2, the cost ratio axes in log-

scale for a better plot. Note that in the experiments, 

although COI increases exponentially, the total cost of 

three cost-sensitive methods do not increase 

exponentially. The reason is that the cost-sensitive 

feature selection methods control the total cost via 

selecting the features, which tends to reduce the high-

cost errors of false acceptance. Thus, we can use 

cross-validation to balance the cost and accuracy in 

practical applications. 

4. Conclusion 
In this paper, we propose a cost-sensitive feature 

selection framework and develop three cost-sensitive 

feature selection algorithms, i.e., CSVS, CSLS, CSCS, 

which consider unequal misclassification costs and 

imbalance problem simultaneously in feature selection 

phase. Compared with traditional feature selection, 

cost-sensitive feature selection aim to minimize the 

total cost rather than the total error rate. Experimental 

results on public datasets show that cost-sensitive 

feature selection has better performance in reducing 

costs and addressing imbalance problem than 

traditional feature selection. In the experiments above, 

the cost matrix is given by users. Learning cost matrix 

from specific dataset is an interesting future issue. 
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