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Abstract Principal component analysis (PCA) is one of the most widely used unsupervised
dimensionality reduction methods in pattern recognition. It preserves the global covariance
structure of data when labels of data are not available. However, in many practical applica-
tions, besides the large amount of unlabeled data, it is also possible to obtain partial supervi-
sion such as a few labeled data and pairwise constraints, which contain much more valuable
information for discrimination than unlabeled data. Unfortunately, PCA cannot utilize that
useful discriminant information effectively. On the other hand, traditional supervised dimen-
sionality reduction methods such as linear discriminant analysis perform on only labeled data.
When labeled data are insufficient, their performances will deteriorate. In this paper, we pro-
pose a novel discriminant PCA (DPCA) model to boost the discriminant power of PCA when
both unlabeled and labeled data as well as pairwise constraints are available. The derived
DPCA algorithm is efficient and has a closed form solution. Experimental results on several
UCI and face data sets show that DPCA is superior to several established dimensionality
reduction methods.

Keywords Principal component analysis (PCA) · Discriminant PCA · Dimensionality
reduction · Semi-supervised dimensionality reduction · Partial supervision

1 Introduction

With the rapid accumulation of high-dimensional data such as digital images, web documents
and gene expression microarrays, dimensionality reduction has been a fundamental tool for
many pattern recognition tasks. According to whether supervised information is available
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or not, existing dimensionality reduction methods can be roughly categorized into super-
vised ones and unsupervised ones. Linear discriminant analysis (LDA) [1] and principal
component analysis (PCA) [2] may be the most well-known supervised and unsupervised
dimensionality reduction methods respectively. The former extracts the optimal discriminant
vectors when class labels are available, while the latter seeks projective vectors to preserve
the global covariance structure when class labels are not available. In this paper, we consider
the following interesting problem, i.e. when both labeled and unlabeled data are available,
how should we perform dimensionality reduction? That problem arises naturally in many
practical pattern recognition applications, where unlabeled training data are readily available
but labeled ones are fairly expensive to obtain [3,4]. That is, we are often confronted with
problems with large amount of unlabeled data but only a few labeled data. Typically, those
labeled data contain much more valuable information for discrimination than unlabeled data.

Unfortunately, neither traditional unsupervised dimensionality reduction methods such as
PCA nor supervised dimensionality reduction methods such as LDA can well deal with the
above dimensionality reduction problems. On one hand, PCA is unsupervised, and it can
not use the useful discriminant information in those labeled data. On the other hand, LDA
performs on only labeled data. When labeled data are sufficient enough, LDA will nearly
always outperform PCA. In contrast, when the number of labeled data per class is so small
that labeled data can not reflect the underlying distribution, the generalization performances
of LDA on unseen samples will not be guaranteed and PCA might outperform LDA. To over-
come the disadvantages of both PCA and LDA, a natural idea is to simultaneously use both
unlabeled data and discriminant information in labeled data for dimensionality reduction.
More specifically, we can either introduce unlabeled data into LDA, or introduce discrimi-
nant information in labeled data into PCA. In this paper, we focus on the latter case.

In this paper, we propose the discriminant PCA model (DPCA), which exploits both
labeled and unlabeled data for dimensionality reduction. DPCA inherits from PCA the char-
acteristic of structure preserving on unlabeled data, and has the new discriminant power by
using the discriminant information in labeled data. The derived DPCA algorithm is efficient
and has a closed form solution. Moreover, DPCA algorithm has the capability to use external
knowledge provided by the user, such as pairwise constraints which specify whether a pair
of instances belong to the same class (must-link constraint) or different classes (cannot-link
constraint) [5,6]. Experimental results on several UCI and face data sets show that DPCA
outperforms several established dimensionality reduction methods. The rest of this paper is
organized as follows: Sect. 2 presents some related work in semi-supervised dimensionality
reduction. The detailed DPCA algorithm is introduced in Sect. 3. Section 4 reports on the
experimental results. Finally, Sect. 5 concludes this paper with some future work.

2 Related Works

In fact, the idea of using both labeled and unlabeled data for learning is not novel in machine
learning. There has appeared a new branch in machine learning called semi-supervised learn-
ing whose main concern is to learn from a combination of both labeled and unlabeled data
[3–5,7]. Because of its success in many practical applications such as text categorization [3],
semi-supervised learning has received much attention in recent years. Current researches on
semi-supervised learning could be roughly categorized into three classes, i.e. semi-super-
vised classification [3], semi-supervised regression [4] and semi-supervised clustering [5].
Research advances of semi-supervised learning can be found in an excellent recent survey [7].
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Recently, some research works which utilize both labeled and unlabeled data for semi-
supervised dimensionality reduction have appeared. For example, Yu et al. [8] proposed a
supervised probabilistic PCA model and a semi-supervised probabilistic PCA model, and the
latter can incorporate both labeled and unlabeled data for dimensionality reduction. However,
their method is based on probabilistic PCA which is a generative model. Also, their algo-
rithm needs iteration and has no closed form solution. Lu et al. [9] proposed a novel hybrid
dimension reduction scheme to merge LDA and PCA in a unified framework. In addition,
many subspace learning algorithms such as spectral regression discriminant analysis method
[10,11] and semi-supervised discriminant analysis method [12] have been proposed. Specif-
ically, Cai et al. [12] proposed the semi-supervised discriminant analysis method called SDA
which utilized local neighborhood information of labeled data for dimensionality reduction.
However, the number of neighborhood in SDA is still hard to set. Besides SDA, SSDACCCP

is a diverse semi-supervised discriminant analysis algorithm proposed by Zhang et al. [13]. It
uses the constrained concave–convex procedure (cccp) to maximize an optimality criterion of
LDA which leads to estimation of the class labels for the unlabeled data. In one of our recent
work [14], we proposed the semi-supervised dimensionality reduction model which uses the
pairwise constraints together with unlabeled data for dimensionality reduction. However,
in that paper, we didn’t discuss using both labeled and unlabeled data for dimensionality
reduction.

3 Discriminant Principal Component Analysis

PCA only preserves the global covariance structure of unlabeled data which can not utilize
discriminant information in labeled data. In this section, we present the DPCA algorithm
which introduces a new discriminant criterion into the original objective function of PCA.

3.1 The DPCA Algorithm

Given a set of n D-dimensional data samples X = {x1, x2, ..., xn}, suppose that there exist l
labeled data L = {

xi1 , xi2 , ..., xil

} ⊆ X , ir |lr=1 ∈ {1, 2, ..., n}, with the corresponding labels
yir ∈ {1, 2, ..., c}, our task is to find a set of projective vectors W = [w1, w2, ..., wd ], such
that the transformed low-dimensional representations zi = W T xi , not only can preserve the
structure of X but also can reflect the discriminant information in L .

The objective function of PCA is defined as maximizing

JPCA = 1

n

n∑

i=1

(
wT xi − wT m

)2 = wT ST w (1)

where m = 1
n

∑n
i=1 xi , ST = 1

n

∑n
i=1 (xi − m) (xi − m)T is the covariance matrix and also

called as the normalized total scatter matrix. For the convenience of discussion, one-dimen-
sional case is considered here but it is not difficult to extend to high-dimensions.

From Eq. 1, PCA does not use the discriminant information in labeled data set L at all.
To make PCA have the discriminant power, without losing its data representation character,
we propose the following objective function

JDPCA = JD + λJPCA (2)

Here, JPCA which is defined in Eq. 1, is the criterion of PCA, and JD denotes some discrim-
inant criterion on labeled data set L. In Eq. 2, λ is a regularized coefficient balancing the
contributions of two terms. In this paper, we adopt the following criterion as maximizing JD
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JD = wT
(

SL
B − ηSL

W

)
w (3)

Where SL
B and SL

W are respectively defined in the following Eqs. 4 and 5, and η is a regularized
coefficient balancing the contributions of two terms.

SL
B = 1

|�B |
∑

(xi ,x j)∈�B

(
xi − x j

) (
xi − x j

)T (4)

SL
W = 1

|�W |
∑

(xi ,x j)∈�W

(
xi − x j

) (
xi − x j

)T (5)

Where |A| denotes the cardinality of a set A, and �B and �W is respectively defined by
Eqs. 6 and 7 as follows

�B = {(
xi , x j

)∣∣ xi , x j ∈ L and yi �= y j
}

(6)

�W = {(
xi , x j

)∣∣ xi , x j ∈ L and yi = y j
}

(7)

We call SL
B and SL

W as generalized between-class scatter matrix and generalized within-
class scatter matrix respectively. The intuition between Eq. 3 is to let the average distance in
the transformed low-dimensional space between data examples in different classes as large
as possible, while distance between data examples with the same class as small as possible.

Substituting Eqs. 1 and 3 into Eq. 2, we obtain the objective function of DPCA as maxi-
mizing JDPCA w.r.t.wT w = 1, where

J ′
DPCA = wT

(
SL

B − ηSL
W + λST

)
w (8)

Clearly, Eq. 8 is a typical eigen-problem, which has a closed form solution by computing
the eigen vectors of SL

B − ηSL
W + λST corresponding to the largest eigen values. The whole

procedure of the proposed DPCA algorithm is summarized in Algorithm 1 as below.

Algorithm 1: DPCA

Input: Data set X = [x1, x2, ..., xn], labeled data set L = [
xi1 , xi2 , ..., xil

] ⊆ X and
corresponding class labels yir ∈ {1, 2, ..., c}, ir |lr=1 ∈ {1, 2, ..., n}; parameters η,λ,d .

Output: Projective matrix W = [w1, w2, ..., wd ].
Step 1: Construct the sets �B and �W from labeled data set L according to Eqs. 6

and 7 respectively.
Step 2: Compute SL

B and SL
W using Eqs. 4 and 5 respectively.

Step 3: Compute ST = 1
n

∑n
i=1 (xi − m) (xi − m)T , m = 1

n

∑n
i=1 xi .

Step 4: Compute the d eigenvectors W of SL
B − ηSL

W + λST corresponding to the
largest d eigenvalues.

3.2 DPCA with Pairwise Constraints

In general, domain knowledge can be expressed in diverse forms, such as class labels, pair-
wise constraints or other prior information [14]. Pairwise constraints arise naturally in many
tasks such as image retrieval. In those applications, considering the pairwise constraints is
more practical than trying to obtain class labels, because the true labels may not be known a
priori, while it could be easier for a user to specify whether some pairs of instances belong
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to the same class or not. Moreover, the pairwise constraints can be derived from labeled data
but not vice versa. Furthermore, unlike class labels, the pairwise constraints can sometimes
be automatically obtained without human intervention [6]. Fortunately, our DPCA algorithm
can easily utilize both pairwise constraints and labeled data.

Given some supervision information in the form of must-link constraint set M= {(xi ,x j )|
xi and x j belongs to the same class} and cannot-link constraint set C= {(xi ,x j )| xi and x j

belongs to the different classes}, we can define the new generalized between-class scatter
matrix SL ′

B and generalized with-class scatter matrix SL ′
W using both pairwise constraints sets

M, C and the labeled data set L as follows

SL ′
B = 1

|�B ∪ C |
∑

(xi ,x j)∈�B∪C

(
xi − x j

) (
xi − x j

)T (9)

SL ′
W = 1

|�W ∪ M|
∑

(xi ,x j)∈�W ∪M

(
xi − x j

) (
xi − x j

)T (10)

Then we can obtain the new objective function of DPCA as maximizing J ′
DPCA w.r.t.wT w =

1, where

J ′
DPCA = wT

(
SL ′

B − ηSL ′
W + λST

)
w. (11)

4 Experiments

In this section, we evaluate the performance of our proposed DPCA algorithm on several
UCI data sets [15] including Dermatology, Horse, Iris, Lymph, Sonar, Soybean, Vowel and
Wine, and on one face database: YaleB [16]. Table 1 gives the statistics of the 8 UCI data
sets. For each UCI data set, we choose the first half of samples from each class as the training
data, and the remaining for testing data. Then we randomly select a few data samples from
the training data as the labeled data. The process is repeated for 100 runs and the averaged
results are recorded.

The performances of all algorithms are measured by the classification accuracy on testing
data. In all experiments, the nearest neighborhood (1-NN) classifier is employed for classifi-
cation, after dimensionality reduction with the above algorithms. For DPCA, we choose the
values for parameters η and λ from the set {0.1, 1, 10}. More specifically, For Horse, Iris,

Table 1 Statistics of the UCI
data sets

Data sets Size Dimension # Of classes

Dermatology 366 33 6

Horse 368 27 2

Iris 150 4 3

Lymph 148 18 4

Sonar 208 60 2

Soybean 47 35 4

Vowel 528 10 11

Wine 178 13 3
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Sonar, and Vowel, we set η = 1, while for Dermatology, Lymph, Soybean and Wine, we set
η = 10. For all 8 UCI data sets, we set λ = 1. For YaleB, we set η = 10 and λ = 0.1.

4.1 Results on UCI Datasets

Figure 1 shows the plots for accuracy under desired number of reduced dimensions ver-
sus different numbers of labeled data on 8 UCI data sets. Here we also plot the error bars
representing standard deviations for PCA-p, LDA-p, SDA and DPCA. The desired number
of reduced dimensions is the number of the classes of labeled data. For each data set, we
compare DPCA with PCA and LDA. PCA performs on the full training data without using
labels, while LDA performs on the full training data using all labels. In other words, PCA is
fully unsupervised while LDA is fully supervised. For comparison, we also implement two
variants on PCA and LDA, i.e. PCA-p and LDA-p, which denote PCA and LDA performing
on the partial labeled data set respectively. In addition, we also compare our DPCA with
SDA which is proposed in [12].

Figure 1 indicates that, in most cases, DPCA achieves the best performances among the 6
algorithms except LDA. It can be also seen from Fig. 1 that, on most data sets, as the number
of labeled data increases, the accuracies of LDA-p, SDA and DPCA also increase. It verifies
that labeled data are very useful for discrimination. Moreover, the error bars show that DPCA
almost has smallest standard deviations when varying the number of labeled data. It indicates
that DPCA is more stable than other algorithms. On the other hand, a closer study on Fig. 1
reveals that, generally, the accuracy of DPCA increases fast in the beginning (with a few
labeled data) and slows down at the end (with relatively more labeled data). It implies that
too many labeled data won’t help too much to further boost the accuracy, and only a few
labeled data are sufficient in DPCA. In contrast, LDA-p or SDA typically requires relatively
more labeled data to obtain a satisfying accuracy as shown in Fig. 1. We conjecture that the
reason may be DPCA uses the unlabeled data, which makes it more stable. The averaged
accuracy under different numbers of labeled data on 8 UCI data sets is summarized in Table 2.
It is impressive to see that DPCA is nearly always superior to SDA on eight datasets.

Furthermore, we discuss the DPCA after introducing supervision in the form of pairwise
constraints. Figure 2 shows the plots for accuracy versus different numbers of labeled data and
different levels of constraints on Lymph and Wine data sets. Table 3 summarizes the averaged
accuracy under different numbers of labeled data with different numbers of constraints. There
are 3 levels of constraints, i.e. 10 constraints, 30 constraints and 50 constraints. From Fig. 2
and Table 3 we notice the same tendency on two datasets. That is, increasing the number of
constraints improves the accuracy, which is more apparent when fewer labeled data are used.

4.2 Results on YaleB Face Database

Finally in this subsection, we use DPCA for 2D visualization. We choose the first 5 subjects
from YaleB face database and get totally 320 face samples. Figure 3 shows an illustration
for one person. As shown from the figure, the variability between images of the same per-
son is mainly due to different lighting conditions. These factors make the variability among
images belonging to the same subject greater than the variability among images of different
subjects. Figure 4 gives the 2D visualization results when different numbers of labeled data
are used. Note that when 0 labeled data is used, DPCA is equivalent to original PCA. It can
be seen from Fig. 4 that, PCA cannot correctly indicate the intrinsic structure of the dataset in
2-dimensional space. However, with a few labeled data, DPCA can find the intrinsic structure
of face images and correctly represent them in 2-dimensional space.
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Fig. 1 Accuracy versus different numbers of labeled data on 8 UCI data sets: a on Dermatology, b on Horse,
c on Iris, d on Lymph, e on Sonar, f on Soybean, g on Vowel, h on Wine
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Table 2 Averaged accuracy (%) of different algorithms on UCI data set (the values behind the symbol ‘±’
denote the standard deviation)

Data sets PCA LDA PCA-p LDA-p SDA DPCA

Dermatology 83.5 96.7 78.1 ± 5.2 82.5 ± 8.3 89.9 ± 4.4 90.5 ± 5.1

Horse 64.7 78.3 66.3 ± 1.1 61.9 ± 1.7 64.7 ± 0.7 70.1 ± 1.6

Iris 96.0 94.7 95.9 ± 0.1 93.6 ± 3.3 95.0 ± 0.3 96.0 ± 0.2

Lymph 72.6 86.3 70.9 ± 3.1 64.9 ± 6.5 73.8 ± 5.8 75.8 ± 5.1

Sonar 68.9 72.8 64.5 ± 1.3 56.0 ± 1.6 65.3 ± 2.0 69.7 ± 3.0

Soybean 91.3 95.7 85.9 ± 6.7 91.9 ± 12.6 96.4 ± 6.0 97.2 ± 5.0

Vowel 52.5 49.1 50.1 ± 4.4 33.2 ± 5.1 39.6 ± 1.7 51.2 ± 2.1

Wine 89.8 97.7 88.8 ± 2.4 89.4 ± 8.4 94.5 ± 2.8 94.7 ± 2.9
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Fig. 2 Accuracy versus different numbers of labeled data and different levels of constraints on 2 UCI data
sets: a on Lymph, b on Wine

Table 3 Averaged accuracy (%) with different levels of constraints on UCI data set

Data sets PCA LDA DPCA DPCA(10) DPCA(30) DPCA(50)

Lymph 72.6 86.3 76.8 ± 4.3 77.1 ± 4.2 78.5 ± 3.0 79.7 ± 2.4

Wine 90.0 97.7 94.5 ± 2.9 94.9 ± 2.3 95.6 ± 1.4 96.0 ± 0.1

Fig. 3 Illustration of a subject in YaleB face database
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Fig. 4 Two dimensional visualization results of DPCA with different labeled data: a 0 label (equivalent to
PCA), b 10 labels, c 20 labels, d 50 labels. Each symbol (color) represents a different subjects

5 Conclusion

In this paper, we address the problem of dimensionality reduction when a few labeled data,
besides the large amount of unlabeled data, are available. We introduce a new discriminant
criterion into the original objective function of PCA, and propose the discriminant PCA
(DPCA) algorithm to boost its discriminant power. DPCA can effectively use the unlabeled
data as well as the discriminant information in the labeled data for dimensionality reduc-
tion. Moreover, DPCA can easily utilize the supervision information in the form of pairwise
constraints. The derived DPCA algorithm is efficient and has a closed form solution. Exper-
imental results on several UCI and face data sets show that DPCA is superior to several
established dimensionality reduction methods.
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