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Abstract—Human age estimation is an important research
topic and can find its applications in such as commodity recom-
mendation and security monitoring. The establishment of existing
estimators basically follows a same pipeline, i.e., an estimator
is built from a given training dataset like FG-NET and then
evaluated on a holdout testing set to determine its effectiveness.
In doing so, a usually-followed assumption is that both training
and testing sets should share the same age distribution and the
same feature representation, implying that 1) once the true age
of a human image to be tested is out of the age range of the
training set, a mis-estimation is naturally inevitable; 2) estimators
built on datasets with different feature representations cannot be
directly applied to make predictions on testing sets of each other
unless re-trained, because their features are usually different (i.e.,
the databases are heterogeneous). To the best of our knowledge,
the age distributions of different aging databases are usually
not consistent and complementary to each other. Motivated by
this fact, in order to incorporate such a complementarity in
age distributions to improve the generalization ability of the age
estimator, in this paper we propose a unified cross-heterogeneous-
database age estimation method by first projecting the training
samples, usually represented with different features, of different
aging databases into a common feature space, and then con-
structing an age estimator in their mixed sample space. By this
way, the age-distribution-incompleteness of the aging datasets
can be alleviated by co-representation among them and thus the
discriminating ability of the age estimator can be reinforced.
Finally, experimental results demonstrate the superiority of the
proposed method.

I. INTRODUCTION

Human age estimation is an important research topic and
has attracted increasing attention in recent years due to its
wide applications in recommendation systems [1], [2], security
access control [3], [4], biometrics [5], [6] and entertainment
[7], [8], etc.

To perform age estimation according to human facial
appearance, a variety of methods have been proposed. Gen-
erally, these methods can be grouped into three categories:
classification-based (e.g., [9], [10], [11], [12], [13], [14], [15]),
regression-based (e.g., [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27]), and their hybrid methods (e.g.,
[3], [28]). When treating each age as a separate class, we can
perform age estimation using the existing classification frame-
works. According to this principle, artificial neural networks

(ANN) [9], conditional probability neural networks (CPNN)
[10], Gaussian mixture models [11], and extreme learning
machines (ELM) [13] have been successively employed for
age classification. More recently, Alnajar et al. [14] proposed
an expression-insensitive age estimation method. Dibeklioglu
et al. [15] performed age estimation by incorporating facial dy-
namics together with the appearance information. Actually, age
estimation is more of a regression problem rather than ordinary
classification due to its characteristics of continuity and mono-
tonicity. Along this line, quadratic function [16], [22], multiple
linear regression [17], ξ-SVR [18], SDP regressors [19], [20],
aging pattern subspace (AGES) [21], multi-instance regressor
[24], and KNN-SVR [27] have been successively proposed for
human age regression. Besides the above pure classification
or regression based methods, their hybrid methods have also
been adopted to train a more powerful estimator. For example,
Guo et al. [3] established a so-called locally adjusted robust
regression (LARR) to predict human age by combining a series
of classifiers and regressors.

After analyzing the above methods, we can find that
they basically follow a same pipeline, i.e., an estimator is
built from a given training dataset like FG-NET and then
evaluated on a testing set to determine its effectiveness. In
doing so, a usually-followed assumption is that both training
and testing sets should share the same age distribution and
the same feature representation, which implies that 1) once
the true age of a human image to be tested is out of the
age range of the training set, a mis-estimation is naturally
inevitable; 2) estimators built on datasets with different feature
representations cannot be directly applied to make predictions
on testing sets of each other unless re-trained, because their
required dimensions of features are usually not matched. As
a result, when faced with cross-heterogeneous-database age
estimation scenarios, all the aforementioned methods become
not applicable because the feature representations and age
distributions of the databases are typically not compatible.
Without loss of generality, let us take the FG-NET (commonly
with AAM feature representation) and Morph (typically with
BIF feature representation) databases as examples, two widely
used aging datasets for age estimation as shown in Figure 1.
The samples of FG-NET mainly distribute at the age range of
0 to 36 years old. By contrast, the age distribution of Morph
mostly lies between 16 and 50 years old. It can be intuitively
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Fig. 1: The age distributions of FG-NET (a) and Morph (b)
aging databases. The x-axis and y-axis respectively denote the
age distribution and the number of samples at corresponding
age.

found that the age distributions of FG-NET and Morph are
quite inconsistent, but complementary to some extent. For
example, there are no samples at the ages from 0 to 15
years old in Morph itself, but if it is mixed with FG-NET,
there will be samples from FG-NET to compensate for the
sample space corresponding to 0 to 15 years old of Morph.
Therefore, it is preferred to train an age estimator across
databases. However, it is a challenging learning problem
because the feature representations and age distributions of
these databases are not compatible. Although there has been a
related work performing cross-database age estimation [29], it
requires the databases share the same feature representation.

Remark

At first glance the existing multi-task [30] and/or zero-shot
[31] learning strategies seem able to be extended to handle
such a cross-database age estimation problem, however it is
quite not feasible due to that 1) in multi-task framework,
the tasks involved require the same feature representation
and output distribution; 2) for zero-shot learning, although
it can train an estimator to recognize patterns that have
not appeared in training phase, it requires the intermediate
semantic attributes to bridge the feature representation and
the output label. Unluckily, no semantic attributes are currently
provided in the case of cross-database age estimation, implying
which cannot be implemented through zero-shot learning.

Although the cross-database age estimation is so challeng-
ing and there are no existing methods able to be referred,
the complementarity-in-age-distributions of different databases
inspires us to present a unified cross-heterogeneous-database

age estimation method by first projecting the aging datasets
into a common feature space, and then making age prediction
in their mixed sample space. By this way, the age-distribution-
incompleteness of the aging datasets can be alleviated by co-
representation among them and thus the age discriminating
ability of the estimator can be reinforced. More importantly,
our method just need train a single unified estimator on all
the involved aging databases, while all the existing methods
must train a respective estimator for each of the databases and
the resulting estimators can not make estimations across each
other. Finally, we experimentally demonstrate the superiority
of the proposed method.

The rest of this paper is organized as follows. In Section
II, we briefly review a related work. In Section III, we propose
our method. In Section IV, we conduct experiments to evaluate
the proposed method. Finally, Section V concludes this paper.

II. RELATED WORK

In [29], Su et al. proposed a cross-database age esti-
mation method based on transfer learning. They combined
the discriminant subspace learning and transfer learning to
perform transfer age estimation between different databases.
Concretely, let W denote the discriminant projection matrix,
Sb and Sw denote the between-class and within-class scatter
matrices of the source database, respectively. Besides, assume
µk and Σk describe the mean and covariance of the k-th
Gaussian component in the target database, and their new
mean and covariance in the discriminant projection space are
µ
′

k , WTµk and Σ
′

k , WTΣkW . The objective function of
their cross-databases age estimation is formulated as below

Wopt = arg max
W

(
(F (W ) + λH(W )

)
, (1)

where F (W ) , tr(WTSbW )
tr(WTSwW )

stands for the discriminant
subspace learning term on the source database, H(W ) ,∑N
i=1

∑K
k=1${lnπk + lnN(yi|µ

′

k,Σ
′

k)} describes the like-
lihood on the target database with $ being the normalization
factor, and λ is the nonnegative tradeoff parameter. It is
through the regularization term H(W ), they achieved transfer
discriminant subspace learning to cater for cross-database age
estimation.

Although Su et al. achieved the goal of cross-database age
estimation by employing the transfer learning strategy, the pri-
or knowledge of inconsistence-in-age-distribution of different
aging databases and the complementarity-in-age-distribution
between the datasets has not been taken into account yet. To
address such drawbacks, in the next section, we propose a
novel co-representation based cross-database age estimation
method.

III. THE PROPOSED METHOD

In the scenario of cross-heterogeneous-database age es-
timation, two key issues are involved. The first is the fea-
ture dimension issue: the feature representations of different
databases are usually not compatible, e.g., FG-NET with AAM
feature representation and Morph with BIF representation,
and consequently their feature dimensions are different. The
second issue is how to conduct collaborative learning between
the databases. To perform cross-heterogeneous-database age
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Fig. 2: Illustration of the proposed co-representation based cross-heterogeneous-database age estimation.

estimation while handling the above issues, we propose a novel
co-representation based cross-database age estimation method
as illustrated in Figure 2. In our method, we first perform
dimension reduction for the databases to dimension-identical
feature spaces. By this way, the sample spaces of different
databases can be projected to a hybrid sample space. More
importantly, the age distribution incompleteness of individual
databases can be alleviated by complementarity from each
other. Then, in the projected hybrid sample space, we can con-
struct a unified age predictor over all the databases involved.
Concretely, without loss of generality, we just consider two
databases and let {x1i }

N1
i=1 ∈ Rd1 and {y1i }

N1
i=1 ∈ R respectively

denote the N1 training samples and corresponding age labels
from the first aging database, and {x2j}

N2
j=1 ∈ Rd2 and {y2j }

N2
j=1

∈ R the N2 training samples and corresponding age labels
from the second aging database1. In order to reduce {x1i }

N1
i=1

and {x2j}
N2
j=1 to a d-dimensional (d ≤ min{d1, d2}) common

feature space, we seek two projection matrices, denoted as
P1 ∈ Rd1×d and P2 ∈ Rd2×d, such that after projection the
dimensions of their new representations zi , PT1 x

1
i ∈ Rd and

zj , PT2 x
2
j ∈ Rd are identical. In practice, such P1 and P2

can be obtained by performing dimension reduction such as
Canonical Correlation Analysis (CCA) [32] on the data sets.
By this way, we can merge the sample space of database 1 and
the one of database 2 into a hybrid common space {zp}N1+N2

p=1 .
Then, in the hybrid sample space, we can construct an age
prediction function f(z) ,

∑N1+N2

p=1 αp ·k(zp, z) with k(zp, z)
being similarity metric function and representation coefficients
α obtained by optimizing the following objective function:

min
α

N1+N2∑
i=1

‖
N1+N2∑
p=1

αp · k(zp, zi)− yi‖22 + λ1‖α‖22 + λ2‖α‖1,

1Actually, our modelling strategy can be similarly extended to three or more
databases.

(2)

where α , [α1, α2, · · ·, αN1+N2
]T , and λ1 and λ2 are two

nonnegative trade-off parameters. As shown in Eq. (2), the first
term penalizes the loss on training data, meanwhile the second
term, i.e., L2 norm, controls the smoothness of α. Unlike the
L2 term, the L1 term (i.e. the third term) plays a role in
inducing the sparseness of α, which essentially encourages
each age to be represented by a subset rather than the whole
sample sets while automatically dropping the outline samples
(i.e., the samples whose age labels are inaccurate) at each age.
It is motivated by the fact that an age can be represented by
the samples at ages close to it [21], [33].

For the sake of simplifying the optimization, we equiva-
lently rewrite Eq. (2) as

min
α
‖Kα− y‖22 + λ1‖α‖22 + λ2‖α‖1, (3)

in which K ∈ R(N1+N2)×(N1+N2) is the kernel matrix defined
on training data with Ki,j , k(zi, zj), and y , [y1, y2, · ·
·, yN1+N2

]T . In order to optimize Eq. (3), we first respectively
augment the kernel matrix K and class labels y to K∗ and y∗,
defined as below:

K∗ , (1 + λ2)−
1
2 (K,

√
λ2I)T and y∗ , (yT , 0)T ,

where I and 0 denote an (N1+N2)-order identity matrix
and (N1+N2)-dimensional zero vector, respectively. Let γ ,
λ1√
1+λ2

and α∗ ,
√

1 + λ2α. Then, Eq. (3) equivalently
becomes

min
α∗
‖K∗α∗ − y∗‖22 + γ‖α∗‖1. (4)

Eq. (4) is a classical LASSO problem [34] and can be solved
using coordinate descent [35] with the p-th element of α∗
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updated as below

α∗p = sgn(αolsp )(|αolsp | − γ)+

=


αolsp − γ, αolsp > γ

0, −γ ≤ αolsp ≤ γ
αolsp + γ, αolsp < γ

(5)

where sgn(·) is a sign function, αols stands for the analytical
solution of minα ‖K∗α∗ − y∗‖22, and (|αolsp | − γ)+ equals to
|αolsp | − γ if |αolsp | − γ > 0, and 0 otherwise. Based on Eq.
(5), we conduct cyclic iterations between all elements of α∗
until they converge. With the obtained optimal α∗, we can
recover the optimal value of α through α , 1√

1+λ2
α∗. The

complete optimization algorithm for Eq. (3) is summarized in
Algorithm 1.

Algorithm 1 The optimization algorithm of Eq. (3).

Input:
Training data: {x1i , y1i }

N1
i=1 , {x2j , y2j }

N2
j=1.

Parameters: λ1, λ2.
Output:

The optimal representation coefficients α of Eq. (3).
———————– Training Stage ———————–

1: Project the cross-database instances {x1i }
N1
i=1 and {x2j}

N2
j=1,

through transformation zi , PT1 x
1
i and zj , PT2 x

2
j , into

common space {zp}N1+N2
p=1 ;

2: Centralize the {zp}N1+N2
p=1 and then construct the kernel

matrix K on them;
3: Augment the kernel matrix K and corresponding labels y

to K∗ and y∗, and then convert Eq. (3) to Eq. (4);
4: do
5: for p = 1, 2, · · ·, N1+N2 do
6: Update α∗p based on Eq. (5);
7: end for
8: until α∗ converges
9: Compute α = 1√

1+λ2
α∗.

IV. EXPERIMENTS

To evaluate the proposed method, in this section we con-
duct experiments on two aging databases, i.e., FG-NET and
Morph album I. For FG-NET dataset, it consists of 1002 facial
images captured from 82 persons aged from 0 to 36 years old.
For Morph Album I, there are about 1690 facial images from
631 persons aged from 16 to about 77 years old. Their age
distributions and image examples are shown in Figure 1 and
Figure 3, respectively.

A. Experimental Setup

In the experiments, we extract 200-dimensional AAM
parameters from FG-NET as its original feature represen-
tations, and draw BIF features from Morph database. The
k(zi, zj) in Eq. (2) is uniformly taken the Gaussian function
exp(−‖zi−zj‖2/δ) with δ being the kernel bandwidth. Without
loss of generality, we adopt the CCA algorithm to reduce
the AAM and BIF features of FG-NET and Morph to a
lower dimension-identical feature space where the optimal
dimension, as well as all the other hyper-parameters involved

( )a

( )b

Fig. 3: Image examples of FG-NET (a) and Morph (b).

in the experiments, is determined by cross-validation. Besides,
we uniformly adopt the Mean Absolute Errors (MAE) as the
performance measure, where MAE := 1

N

∑N
i=1 |l̂i−li| with li

and l̂i denoting the true and predicted age values, respectively.
All the reported results are averaged over 10 runs, each with
the same experimental setup. Before reporting the results, we
first introduce the methods compared in the experiments as
below:

• TLDA: the transfer learning based method of [29]2.

• on individual DB: the method of Eq. (3) learned on
a single database (DB).

• cross DBs with L2 norm (ours): the method of Eq.
(3) learned across aging databases penalized with only
the L2 norm on the representation coefficients α (i.e.,
removing the L1 norm from the objective function).

• cross DBs with L2 and L1 norms (ours): the
method of Eq. (3) learned across aging databases
penalized with L2 and L1 norms on the representation
coefficients α.

B. Experimental Results

On the FG-NET and Morph aging databases, we conduct
comparative age estimation experiments. The results on the
two databases are plotted in Figure 4. From it, we can see that

• Compared with the method learning just on individual
database, the transfer learning or cross-database based
methods can yield better age estimations with lower
MAEs. It shows that making age estimation by using
the age classes from two age-distribution-inconsistent
databases can improve the generalization ability of an
age estimator than using the ones just from a single
database.

• The MAEs yielded cross DBs with L2 norm penaliza-
tion3 are consistently lower than those by TLDA. It
demonstrates the superiority of the proposed methods
over the transfer learning based method.

2Since TLDA requires the source and target databases share a same
feature representation (implying with identical feature dimension), we project
the involved aging databases to dimension-identical feature space and then
perform cross-database age estimation using TLDA.

3Actually, the experimental setting is adverse to our method because
compared to the other methods, the superiority of our method in discriminating
the age classes which have not appeared in the training phase can not be fully
demonstrated.
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Fig. 4: Comparison of individual or cross-database age esti-
mation tested on FG-NET (a) and Morph (b).

• The MAEs yielded cross DBs penalized with both L2

and L1 norms are significantly lower than those just
with L2 norm. It witnesses that a sparse solution of
the samples representation coefficients α (see Eq. (3))
help to improve the discriminating ability of the age
estimator. It is consistent with the prior knowledge
that an age can be well represented by its neighboring
ages rather than the whole age range, implying the
soundness of imposing L1 norm on the α.

Besides, in order to figure out the effect of the sparsity
of α in Eq. (3), we randomly select 10 samples from each
age of the databases4 and conduct experiments plot the age
estimation performance with respect to varying λ2 in Figure 5.
It demonstrates that with increasing value of λ2, age estimation
MAEs of the proposed method (see Eq. (3)) decrease but then
tend to increase, which shows although a sparse representation
is preferred, an age pattern can not be sufficiently expressed

4If the number of samples at some ages is less than 10, all of their samples
will be selected for training.
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Fig. 5: Age estimation performance with respect to varying λ2
tested on FG-NET (a) and Morph (b).

by too few samples.

V. CONCLUSION

In this paper, we proposed a unified co-representation
based cross-heterogeneous-database age estimation method by
first projecting different aging datasets into a dimension-
identical feature space, and then making age prediction in
their sample space with co-representation learning. Finally, we
experimentally demonstrated the superiority of the proposed
method. It should be noted that although we did not specifically
consider the ordinal relationship of the age range [33], [36]
for fair comparison with the work of [29], it is trivial to
incorporate such a relationship in our method. For better age
estimation, label distribution learning [10] as well as database-
decentralized age estimation will also be considered in our
future work.
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