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In this paper, a novel supervised dimensionality reduction method is developed based on
both the correlation analysis and the idea of large margin learning. The method aims to
maximize the minimal correlation between each dimensionality-reduced instance and
its class label, thus named as large correlation analysis (LCA). Unlike most existing corre-
lation analysis methods such as CCA, CCAs and CDA, which all maximize the total or
ensemble correlation over all training instances, LCA devotes to maximizing the individual
correlations between given instances and its associated labels and is established by solving
a relaxed quadratic programming with box-constraints. Experimental results on real-world
datasets from both UCI and USPS show its effectiveness compared to the existing canonical
correlation analysis methods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Canonical correlation analysis (CCA) [1], proposed by Hotelling in 1936, is a typical multivariate statistical analysis meth-
od. It aims to find a set of canonical basis vectors or projections for given two datasets by maximizing their total or ensemble
correlation in a (common) projected space. Nowadays, CCA and its variants have been widely used in many areas such as
pattern recognition [2–4], image analysis [5–9], computer vision [10,11], data regression analysis [12], image segmentation
[13], climate forecasting[14], and multimedia analysis [15–17] etc. In terms of its mathematical formulation, CCA can be
applied in any paired data. Generally, those paired data are usually obtained from different sources or information channels
for the same (individual) object such as texts and their associated images contained in the same documents or web pages,
sounds (speech) and images (lip feature) from the same person [11], etc. In fact, due to its generality, CCA has been used in
dimensionality reduction (DR), feature extraction [2,4–7,13,14,17] and regression [12]. In this paper, we focus on DR and
subsequent classification in its reduced space or its extracted features. It is well known that DR aims at seeking a transfor-
mation or projection from original potentially high-dimensional data to an alternative lower-dimensional representation to
reveal the underlying structure of the data, and thus facilitates the subsequent tasks [5].

Now for a given set of paired data {(x1,y1), . . . , (xn,yn)}, where xi and yi are instances obtained respectively from the two
views (or sources) of some objects. For reducing the dimensionality of such a set of data, a natural and straightforward option
is using CCA. In particular, when one view of the data, for example, yi, is artificially-given class label associated with xi, per-
forming CCA reduces to single-view supervised DR [3–5,8,13]. With the extracted features, various successive tasks such as
visualization and classification, etc. can be conducted. In this paper, we focus on supervised (discriminant) correlation anal-
ysis. Up to date, there have been many correlation analysis methods proposed for single-view dataset. According to whether
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class label is encoded into objective functions or not, these dimensionality reduction methods can roughly be divided into
two groups: the first group adopts an explicit embedding of the class information [2] of the training instances or/and their
neighbor information [13,18] and the second one an implicit embedding [22,23].

For the first group of correlation analysis methods, it is usually the case that the instances in each class share a common
class label, it has been proved that using the (hard) one-of-C or one-of C-1 class encodings makes CCA reduce to either LDA or
the variants [19–21] of LDA [40], which naturally inherits some limitations from LDA and at the same time weakens strength
of CCA itself. In order to exert its strength able to handle any paired data, Sun [18] designed the instance-dependent soft
labels according to its neighborhood information to develop a supervised CCA, termed as CCAs. The experiment shows that
the CCAs is better than or comparable to CCA in terms of recognition performance. Liu [2] adopted a fuzzy class label for each
instance in the form of its fuzzy membership degree to the distribution of the training instances. Loog et al. [13] gave another
class label encoding approach specially for individual image pixels through concatenating the standard basis vectors in its
neighborhood to segment given image. These correlation analysis methods promote the classification performance to differ-
ent extents through different explicit incorporation of prior (class or neighborhood) information into the process of feature
extraction.

Unlike the above explicit incorporations, CDA [22] and DCCA [23] implicitly incorporate the class information into the
framework of correlation analysis to perform supervised DR. CDA [22] seeks a global linear transformation for DR by simul-
taneously maximizing the difference between the averaged within-class individual correlation and the averaged between–
class individual correlation, however, it just suits for single-view data with class information. In DCCA [23], the authors
firstly defined the within-class and between-class total correlations for the training instances, proved that the former is ex-
actly equal to the negative of the latter and then obtained a DR projection by maximizing the within-class total correlation. It
is worth noting that DCCA mostly analyzes two-view data in which each view corresponds to non-class label information.
But when either view is one-of-C class encoding, DCCA is also equivalent to LDA.

CCA, CCAs and DCCA all focus on maximizing so-defined total or ensemble correlations of the training instances. However,
CDA pays more attention to maximizing the difference between the averaged within-class individual correlations and the
averaged between-class individual correlations. All those methods concern the whole rather than single correlation between
the training instances, thus do not necessarily maximize the individual correlation between pairwise data. But the maximi-
zation of individual correlation is important in many practical applications such as classification. Recently, MMR [24], as a
metamorphosis of CCA, was proposed to maximize the minimal correlation between individual pairs of instances in the fea-
ture space instead of the (total) sum of all instance correlations. Specifically, MMR tries to convert original CCA formalization
into a convex margin-related optimization problem and find the solution to the problem to get a DR projection matrix, which
makes MMR quite similar to support vector machines (SVM) [25,26]. However, such a conversion involves several quite
unnatural operations in a strict mathematical sense that will be displayed in Section 1.

Motivated by the effectiveness of correlation analysis and the idea of large margin learning methods [24–26], we develop
a new dimensionality reduction method termed as Large Correlation Analysis (LCA). LCA effectively combines both the cor-
relation analysis and the large margin learning together. Firstly, we encode the class label for each training instance accord-
ing to the class information and generate a two-view paired dataset to cater for the formulation of correlation analysis.
Secondly, we try to seek a projection matrix by maximizing the minimal pairwise correlation between each projected in-
stance and its corresponding (hard or soft) class label. Finally, we further using the properties of the matrix norm to relax
the pairwise correlation to obtain a large correlation analysis method, i.e. LCA. LCA can be estabilished by solving a relaxed
convex quadratic problem. It is necessary to point out that unlike the relaxation of MMR, our relaxation is natural and math-
ematically strict as detailed in Section 2. For the problem of optimizing convex quadratic programming with multivariate
output, we first transform the convex quadratic programming into a corresponding box-constrained quadratic programming
(BQP) via duality and then solve it by Project Barzilai–Borwein (PBB) method [27–29] effectively.

The rest of the paper is organized as follows. Section 2 gives a brief review of the related works. Section 3 derives our LCA
for dimensionality reduction by maximizing the minimal pairwise correlation between each projected instance and its la-
bels. Section 4 presents the experimental results on real-world datasets including UCI and USPS databases, followed by
the conclusions and discussions in Section 5.

2. Related works

2.1. Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) utilizes a given paired dataset respectively from two spaces to simultaneously find a
projection matrix for each feature space with aim at maximizing the correlation between the two projected representations
[1,5].

Consider two multidimensional variables x and y both with zero mean, CCA tries to seek directions wx and wy to maxi-
mize the correlation between their projections, which can be expressed as
max
wx ;wy

Ex;y½wT
x xyT wy�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex½wT
x xxT wx�Ey½wT

y yyT wy�
q ; ð1Þ
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where E[�] denotes the expectation of the variables. Usually, we are given a set of pairwise data {(x1,y1), . . . , (xn,yn)}, where xi

and yi correspond to the i-th object respectively. Denote X = [x1, . . . ,xn], Y = [y1, . . . ,yn]. Now empirically problem (1) can be
approximated as
max
wx ;wy

wT
x XYT wyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
x XXT wxwT

y YYT wy

q : ð2Þ
Obviously, what CCA maximizes is the total or ensemble correlation on the training instances. However, it is intuitive that
such a correlation may not guarantee the maximization of individual correlations. Conversely, maximization of individual
correlations can more likely lead to the total ensemble correlation. It is likely such an intuition that motivates Szedmak
et al. [24] to develop their MMR as a variation of CCA.
2.2. Maximum margin robot (MMR)

In their implementation, Szedmak et al. [24] made the following relaxations:
Firstly,
wT
x XYT wyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
x XXT wxwT

y YYT wy

q ¼
YwT

y ;XwT
x

D E
F

wT
x X

�� �� wT
y Y

��� ���)
Y;XwT

x wy

D E
F

kYkF XwT
x wy

��� ���
F

: ð3Þ
Next, problem (3) is converted into a linearly constrained convex optimization problem with the form of maximizing the
margin in SVM. Concretely, (3) is reformulated as
min XwT
x wy

��� ���
F

s:t: Y;XwT
x wy

D E
F

P k:
ð4Þ
Furthermore, (1) a data independent objective wT
x wy

�� ��
F is used to replace the original data dependent objective function

XwT
x wy

��� ���
F

in (4); (2) the total constraint in (4) is decomposed into a set of individual constraints corresponding to each in-
stance, consequently, the MMR optimization problem is finally formed below:
min 1
2 wT

x wy

�� ��2
F

s:t: yi;wywT
x xi

� �
F P 1; i ¼ 1;2; . . . ; n;

ð5Þ
where k � kF denotes the Frobenius norm and hA,BiF = tr(ATB) is the Frobenius inner product [29]. Such a relaxation from (3) to
(5) involves several quite unnatural steps in a strict mathematical sense: 1) the denominator conversion from the left side to
the right side of ‘‘) ’’ is mathematically neither natural nor strict; 2) the conversion of the objective functions from (4) to (5)
is mathematically not so strict. More crucially, the solution resulted from (5) is the product of wx and wy, which is not con-
venient for subsequent learning tasks such as visualizations. Though formally different from MMR, Ma et al. [22] also use
individual correlations to develop CDA [22].
2.3. Correlation discriminant analysis (CDA)

Let xi 2 RD(i = 1,2, . . . ,n) be D-dimensional instances and yi 2 {1,2, . . . ,C} be associated hard class labels, where C is the
number of classes. Unlike MMR, CDA [22] seeks an optimal DR transformation matrix W to maximize the difference between
the averaged within-class individual correlations and the averaged between-class individual correlations.
max
W

1
Nw

Xn

ði;jÞjyi¼yj

xT
i Axjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT
i AxixT

j Axj

q � 1
Nb

Xn

ði;jÞjyi–yj

xT
i Axjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT
i AxixT

j Axj

q ð6Þ
or
max
W

1
Nw

Xn

ði;jÞjyi¼yj

xT
i Axjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT
i AxixT

j Axj

q � 1
n2

Xn

ði;jÞ

xT
i Axjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT
i AxixT

j Axj

q : ð7Þ
Here, Nw and Nb are the numbers of instance pairs from the same classes or different classes respectively, and A = WTW. Sim-
ilar to CCA, the maximization of the averaged individual correlations does not ensure the maximization of single individual
correlation on each pair instances. On the other hand, the CDA objective function in (6) or (7) is not convex and has multiple
local maxima. Thus it has to be solved by iterative optimization techniques such as the gradient ascent approach. In addition,
CDA has higher computational cost due to involvement of many parameters.
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3. Large correlation analysis

3.1. Motivation

The goal of CCA is to find a pair of optimal projections (wx ,wy) to solve problem (1), or equivalently, minimize

Ex;y wT
x x�wT

y y
��� ���2
� �

. It can be proved that CCA can attain the optimal correlation for Gaussian joint distribution of x
y

� 	
[see Appendix A]. However, it is difficult for CCA to obtain an ideal result for non-Gaussian data. One of the reasons behind this
may be due to that the maximization of the total correlation between all given paired training data in the projected space. Thus
CCA can not ensure the maximization of individual correlations in the projected space and that the difference among individual
are more important for the subsequent tasks such as classification. In contrast, CDA [22] pays more attention to the averaged
individual correlations and improves classification performance in its experiments. MMR [24] turns the individual correlations
into corresponding constraints and maximizes the correlations in the maximum margin sense. Its experiments show improve-
ment of subsequent classification performance. Inspired by the success of CDA and MMR, we propose a novel DR method based
on maximum margin learning and (individual) correlation analysis, termed as large correlation analysis (LCA).

3.2. Large correlation analysis

3.2.1. Principle and deduction of large correlation analysis
Suppose that we are given the paired training instances
ðx1; y1Þ; . . . ; ðxn; ynÞ 2 X�Y; ð8Þ
where domain X 2 RD is a nonempty set which is fixed with unknown probability distribution, where instance xi is drawn,
and yi is the corresponding class label encoded as in Appendix B, and thus kyik = 1, i = 1, 2, . . . , n . The instances of the same
class share a common class label as usual. Here it is necessary to point out that LCA can use either hard- or soft-encoded class
labels and has no worry about the reduction to LDA resulted from the hard labels due to use of individual correlations. De-
note X = [x1,x2, . . . ,xn] 2 RD�n and label matrix Y = [y1,y2, . . . ,yn] 2 R(C�1)�n. Without loss of generality, set all kxik = 1, i = 1,
2, . . . , n. Let W be the projection matrix which projects each xi to WTxi. Our goal is to find the W by maximizing the minimum

of all individual correlations qi ¼
yT

i
WT xið Þ

yT
ik kkWT xik

between each projection WTxi and its class label yi, i = 1, 2, . . . , n. This problem can

be formulated as
max
W

min
16i6n

yT
i ðW

T xiÞ
yT

i

�� ��kWT xik
: ð9Þ
Equivalently,
max
W

t

s:t:
yT

i
WT xið Þ

yT
ik kkWT xik

P t i ¼ 1;2; . . . ;n:
ð10Þ
This is a non-convex optimization problem in W and can be solved by the gradient ascent algorithm. But the gradient ascent
algorithm is usually time consuming. According to the Cauchy–Schwarz inequality of matrix norm, i.e., kWTxk2

= kWTxkF 6 kWkFkxk2, we relax the constraints of (10) and obtain
yTðWT xÞ
kykkWT xk

P
yTðWT xÞ
kWkFkxk

¼ yTðWT xÞ
kWkF

: ð11Þ
As a result, the above problem (10) can be translated to
max
W

t

s:t: yT
i ðW

T xiÞP tkWkF i ¼ 1;2; . . . ;n:
ð12Þ
Letting tkWkF = k, we obtaining the following equivalent constrained optimization problem:
min
W

1
k kWkF

s:t: yT
i ðW

T xiÞP k i ¼ 1;2; . . . ;n:
ð13Þ
Now, problem (13) can naturally be expressed as a convex quadratic programming as the following
min
W

1
2
kWk2

F ð14Þ

s:t: yT
i ðW

T xiÞP 1 i ¼ 1;2; . . . ; n: ð15Þ
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Compared to the relaxation of MMR, our relaxation from (10) to (14) and (15) is natural and mathematically strict. Form the
formulation (14), we can find that it has the same objective function as SVM of the quadratic form with linear constraints,
except for: (1) using vector output to replace scalar output in SVM, and (2) using the DR matrix W just as an intermediate
step of designing a final classifier. Thus we call the resulting algorithm (14) and (15) as large correlation analysis (LCA).

3.2.2. Solution and properties of large correlation analysis
In order to solve problem (14) and (15), we apply the Lagrange technique to define the following Lagrange function
LðW;aÞ ¼ 1
2
kWk2

F �
Xn

i¼1

ai yT
i ðW

T xiÞ � 1
h i

: ð16Þ
Zeroing the derivative of the objective (16) with respect to the W and using the Karush–Kuhn–Tucher (KKT) conditions, we
have
@LðW;aÞ
@W

¼W�
Xn

i¼1

aixiyT
i ¼ 0; ð17Þ

ai yT
i ðW

T xiÞ � 1
h i

¼ 0; i ¼ 1;2; . . . ; n; ð18Þ

ai P 0; i ¼ 1;2; . . . ;n; ð19Þ
where a = (a1,a2, . . . ,an)T is a vector consisting of the Lagrange multipliers corresponding to the constraints of (15). By (17),
we obtain W ¼

Pn
i¼1aixiyT

i . It is a tensor product sum of the feature vectors and corresponding label vectors.
Note that yT

i ðW
T xiÞP 1; i ¼ 1;2; . . . ;n are a set of rigorous conditions for all training instances and generally do not al-

ways hold due to the existence of noise or outliers which will lead to no feasible solution for optimization (14) and (15). To
make the problem still solvable and its solution robust, we introduce slack variables ni P 0, i = 1, 2, . . . , n to relax the corre-
sponding constraints as done in the soft margin formulation of support vector machine (SVM) [25,26]. With such a relaxa-
tion, the original constraints are changed into
yT
i ðW

T xiÞP 1� ni; i ¼ 1;2; . . . ; n: ð20Þ
Usually, we adopt
Pn

i¼1ni as a metric to measure the degree of instances violating the constraints. Consequently, the relaxed
LCA is reformulated as
min
1
2
kWk2

F þ g
Xn

i¼1

ni; ð21Þ

s:t: yT
i ðW

T xiÞP 1� ni; i ¼ 1;2; . . . ;n; ð22Þ
ni P 0; i ¼ 1;2; . . . ;n; ð23Þ
where g> 0 is a penalty constant that controls the trade-off between training error and margin. Solving problem (21)–(23)
aims to make the minimal correlation as large as possible and at the same time the number of the constraints violated as
small as possible. So-designed algorithm is termed as soft LCA, or LCA for short.

Again with the Lagrangian technique of the constrained optimization problem (21)–(23), we define the Lagrange function
as follows:
LðW; n;a;lÞ ¼ 1
2
kWk2

F þ g
Xn

i¼1

ni �
Xn

i¼1

ai yT
i ðW

T xiÞ � 1þ ni

h i
�
Xn

i¼1

lini; ð24Þ
where a = (a1,a2, . . . ,an)T and l = (l1,l2, . . . ,ln)T are Lagrangian multipliers. Now zeroing the derivatives with respect to
these variables yields
@LðW;aÞ
@W

¼W�
Xn

i¼1

aixiyT
i ¼ 0; ð25Þ

@L
@ni
¼ g� ai � li ¼ 0; i ¼ 1;2; . . . ;n ð26Þ
And the corresponding KKT conditions are
ai yT
i ðW

T xiÞ � 1þ ni

h i
¼ 0; i ¼ 1;2; . . . ;n; ð27Þ

li P 0; i ¼ 1;2; . . . ;n; ð28Þ
ai P 0; i ¼ 1;2; . . . ;n: ð29Þ
By (25), the projection matrix W can be characterized again as the sum of the tensor products of the instance vectors and
their corresponding class label vectors, that is
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W ¼
Xn

i¼1

aixiyT
i ð30Þ
Substituting the equality constraints of (26) into (24), we obtain its Wolfe dual objective below
DLðW; n;a;lÞ ¼
Xn

i¼1

ai �
1
2

Xn

i¼1

Xn

j¼1

aiajyT
i yjx

T
i xj: ð31Þ
For more detailed derivation, please see Appendix C. Finally, solving problem (21)–(23) is equivalent to solving the following
optimization problem:
max
Pn
i¼1

ai � 1
2

Pn
i¼1

Pn
j¼1

aiajyT
i yjxT

i xj;

s:t: 0 6 ai 6 g i ¼ 1;2; . . . ;n:
ð32Þ
Let Aij ¼ yT
i yjxT

i xj and use them to form a matrix A. It is easy to prove that A is positive semi-definitiness. As a result, (32) can
be rewritten in matrix form as
min 1
2 aT Aa� 1Ta;

s:t: 0 6 a 6 g1;
ð33Þ
where 1 = [1, . . . ,1]T 2 Rn, 0 = [0, . . . ,0]T 2 Rn and a = [a1, . . . ,an]T . Obviously, (33) is a standard box-constrained quadratic pro-
gramming problem (BQP) [27,28] in a and can be solved using any off-the-shelf software packages such as SMO [30] solving
SVM objective. However, slightly different from SVM formulation, our formulation involves multivariate rather than univar-
iate output. Thus instead, we adopt the Projected Barzilai–Borwein Method (PBB) [29,31,32]. PBB method [31,32] is a pro-
jected gradient descent method incorporated with Barzilai–Borwein (BB) method [33] and the Grippo–Lampariello–Lucidi
(GLL) line search [34]. Dai [29] proved its global convergence. In its each iteration, the constraints can be added or deleted
from the working set according to whether they are violated. For more details, please refer to [29].

Now for our optimization problem (33), denote X the feasible set, that is
X ¼ fa 2 Rnj0 6 a 6 g1g: ð34Þ
Let PX be the projection operator onto X
PX aið Þ ¼
ai 0 6 ai 6 g;
0 ai < 0;
g ai > g:

8><
>: ð35Þ
Assume that the current a(k) is feasible and gk = Aa(k) � 1, PBB method updates it to a(k+1) in terms of
aðkþ1Þ ¼ PXðaðkÞ � kkgkÞ; ð36Þ
where kk > 0 is the step length. Once the a is obtained and substituted into (30), a final projection matrix W can be produced
and expressed as
W ¼
Xn

i¼1

aixiyT
i ¼ ðx1;x2; . . . ;xnÞ

a1 � � � 0

..

. . .
. ..

.

0 � � � an

0
BB@

1
CCA

yT
1

..

.

yT
n

0
BB@

1
CCA ¼ XKYT ; ð37Þ
where K = diag(a) is a diagonal matrix with its diagonal entries corresponding components of a. Now for classifying a test
instance xtest, we first use the obtained matrix W to get its projection WTxtest = YKTXTxtest and then use the k-nearest neighbor
classifier (k-NN) to test LCA classification performance and make comparison with some closely-related methods such as
CCA, CCAs and CDA.

For clearness, Algorithm LCA can be formally stated in Table 1 below:
We now enumerate several characteristics of our LCA as follows:

(1) Compared with CCA and CCAs, LCA pays attention to maximizing the mimimum individual correlation between
instance and its class label rather than the total or ensemble correlation (in fact, the sum of all individual correlations)
of the training instances. Although both CDA and MMR treat individual correlations, the former focuses on maximizing
the difference between the averaged within-class individual correlations and the averaged between-class individual cor-
relations. Maximizing the total or averaged individual correlations does not necessarily ensure the maximization of
single individual correlation on each pair instances. However, the latter, MMR, attains its objective in an unnatural
and mathematically unstrict way.



Table 1
Algorithm LCA.

Input: Training instances matrix X = [x1 ,. . . ,xn] 2 RD�n; class label matrix Y = [y1, . . . ,yn] 2 R(C�1)�n; parameter e, k is the index of iterations.

output: a ¼ ða1; . . . ;anÞT ;W ¼
Pn

i¼1aixiyT
i .

Step 1: Compute matrix A with elements Aij ¼ yT
i yjxT

i xj; i; j ¼ 1;2; . . . ;n ;
Step 2: Using PBB method to solve problem (33) to obtain a = (a1, . . . ,an)T

2.0 Let að1Þ ¼ að1Þ1 ; . . . ;að1Þn


 �T
2 Rn and k1 > 0. If a(1) R X, replace a(1) by PX(a(1)). Set k = 1.

2.1 Compute gradient vector gk = Aa(k) � 1. If kPX(a(k) � gk) � a(k)k2 < e, stop.
2.2 Compute a(k+1) = PX (a(k) � kkgk)
2.3 Compute sk = a(k+1) � a(k), and let step-length kk ¼

sT
k

sk

sT
k

gT
kþ1
�gkð Þ .

2.4 Set k = k + 1, and goto step 2.1.
Step 3:Output a = (a1, . . . ,an)T and W ¼

Pn
i¼1aixiyT

i .
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(2) The objective function of LCA can be converted to its dual form by its BQP formulation and the latter can in turn be
effectively solved by PBB method that does not suffer from the singularity problems which causes serious instability
problems for CCA and CCAs. Using PBB method [29] to solve the problem does not need matrix inversion involved in
CCA and CCAs and has been proved to be effective and easily coded. In addition, CCAs is usually time-consuming due
to choice of an additional neighbor number k in determining soft labels for each instance by cross-validation, whereas
CDA needs O(Idn2) computations [22] due to its many parameters involved and random initialization, and thus has
higher cost than LCA which takes O(Idn), where I is the number of iteration, d and n are the dimension and number
of training instances, respectively.

(3) Although MMR has a similar formulation to LCA, its transformation matrix W needs meet decomposability, i.e., it
should be an tensor product of Wx and Wy (Wx and Wy are the projection matrices corresponding to X and Y respec-
tively). The derivation of MMR is somewhat inconsistent with its initial motivation due to several unnatural relax-
ations involved. It is difficult to apply the matrix W obtained by MMR in classification because we don’t know the
exact value of Wx and Wy. In contrast, our LCA is designed specially for single-view datasets with class information.
Thus its projection transformation W can be directly used for subsequent classification.

(4) As we have known, the maximum extractable number of canonical variables by CCA is equal to min{rank(XXT),
rank(YYT)}. When the same class instances share a common class label, CCA reduces to LDA, which leads to that
the maximally- reducible dimensional number is C-1. Although the reduced dimensionality of LCA is also C-1, it
depends on the encoding way of class labels. The final dimension number varies with the encoding way and LCA is
more flexible than both LDA and CCA in this sense.

(5) Both CCA and CCAs use the centered data to define the correlation termed as Pearson’s correlation [36], while the CDA
and our LCA directly base on original un-centered data to define the individual correlation, so-called the cosine cor-
relation [36]. And it has been shown [37,38] that the Pearson’s correlation is less discriminant than the cosine corre-
lation due to the fact that the centered data are less informative than the original data. Though both CDA and LCA
share a common starting point in the definition of correlation, our LCA is desired to have better classification perfor-
mance due to the maximization of the minimal individual cosine correlation which is empirically validated in the fol-
lowing experiments.

4. Experiments and analysis

In this section, to investigate LCA classification performance, we conduct a systematical comparison with the state-of-art
related dimensionality reduction algorithms such as LDA, CCA, CDA, CCAs in UCI database and USPS database. For both LCA
and CCA, we select the same C-simplex vertices encoding [35] as class labels in the following experiments.

4.1. UCI Datasets

4.1.1. Datasets description
The UCI Repository of machine learning datasets [39] includes various datasets consisting of both artificial and real data,

and can be accessed from the web site (http://archive.ics.uci.edu/ml/). Among the data sets in UCI machine learning repos-
itory, we selected 19 data sets which contain thirteen multi-class data sets and six binary-class data sets cited in Table 2.

4.1.2. Experimental setting and evaluation
For each dataset, we randomly select half of each class as training and the rest as testing and repeat the experiments ten

times, and then report their average results in Table 2. For CCAs, the neighbor number k involved is selected from 1 to
min

i
fjCijg , where jCij is the number of training instances of class Ci.The reduced dimension of CCA is min{p,q}, where p

and q denote the dimension of data X and Y, respectively. The reduced dimension of LDA is C-1. CDA just seeks a transfor-
mation matrix without reduction. The parameter g in (33) of LCA is searched by cross-validation from {2�10,2�9, . . .20, . . .

,29,210} for optimizing performance. The parameter sought corresponding to the best results in the validation is used in
testing.

http://archive.ics.uci.edu/ml/


Table 2
Comparison of average (%) and variance ( 10�4) among CCA, LDA, CDA, CCAs and LCA on the 19 UCI datasets.

Dataset (Class/Dim/Num) CCA LDA CDA CCAs (k) LCA

Banlance (3/4/625) 87.60 ± 5.16 87.53 ± 4.83 92.24 ± 0.77 89.13 ± 3.12 (1) 93.94 ± 3.66
Bupa (2/6/345) 57.44 ± 7.79 60.52 ± 14.0 63.26 ± 17.0 60.41 ± 18.74 (76) 69.65 ± 1.94
Cmc (3/9/1473) 42.61 ± 4.22 42.46 ± 4.34 46.61 ± 3.95 44.95 ± 2.32 (24) 44.84 ± 1.47
Dermat (6/33/366) 96.65 ± 0.77 96.32 ± 0.48 85.77 ± 4.39 96. 48 ± 0.47 (2) 97.31 ± 0.49
Ecoli (6/6/332) 81.10 ± 5.45 80.37 ± 4.77 80.30 ± 3.39 81.46 ± 7.12 (2) 81.74 ± 3.50
Glass (6/29/214) 58.57 ± 29.0 54.76 ± 40.0 58.01 ± 8.96 60.28 ± 6.54 (4) 65.33 ± 4.27
Iris (3/4/150) 92.80 ± 4.82 93.33 ± 3.56 91.33 ± 9.18 93.60 ± 3.48 (11) 97.07 ± 1.50
Ionosphere (2/34/351) 82.40 ± 6.30 84.29 ± 5.09 83.43 ± 4.14 83.14 ± 6.62 (3) 89.83 ± 4.34
Lense (3/4/24) 79.09 ± 50.0 79.09 ± 56.0 57.27 ± 221. 78.18 ± 77.14 (2) 85.45 ± 44.2
Pid (2/8/768) 68.88 ± 4.12 68.88 ± 4.12 66.09 ± 3.81 70.44 ± 5.93 (156) 65.91 ± 4.69
Sonar (2/60/208) 75.92 ± 29.0 74.56 ± 23.0 80.39 ± 12.0 77.48 ± 35.78 (29) 83.69 ± 9.80
Soybean (4/35/47) 97.39 ± 5.04 97.39 ± 5.04 92.17 ± 46.0 97.83 ± 5.25(2) 99.13 ± 7.56
Teaching (3/5/151) 55.07 ± 38.0 55.60 ± 79.0 50.67 ± 23.0 53.86 ± 40.38 (20) 58.40 ± 20.0
Thyroid (3/5/215) 92.71 ± 5.20 93.27 ± 7.14 78.32 ± 13.0 93.46 ± 3.88 (9) 96.73 ± 1.79
Vehicle (4/18/846) 73.44 ± 4.82 73.84 ± 3.05 58.01 ± 2.71 73.01 ± 2.66 (9) 52.86 ± 5.37
Wine (3/13/178) 98.07 ± 0.87 97.84 ± 1.56 63.64 ± 16.0 97.38 ± 3.75 (5) 79.89 ± 22.0
Water (2/38/116) 70.88 ± 51.0 71.40 ± 32.0 84.91 ± 9.71 75.09 ± 14.91(4) 86.67 ± 14.0
Wdbc (2/30/569) 93.45 ± 2.38 93.45 ± 2.38 90.25 ± 6.12 94.08 ± 1.12(53) 92.01 ± 2.84
Waveform (3/21/5000) 81.23 ± 0.47 81.22 ± 7.96 74.64 ± 0.24 81.84 ± 0.39 (170) 82.01 ± 0.18
Average 78.17 ± 13.39 78.22 ± 15.7 73.54 ± 21.33 79.05 ± 12.61 80.12 ± 12.1
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4.1.3. Experimental results and discussion
We give the comparison of classification performance of the aforementioned methods in Table 2. In the last 5 columns,

the mean and standard deviation of the accuracy are provided in percent. The bold digits indicate that the corresponding best
mean accuracy is obtained from features extracted by the corresponding linear dimensionality reduction methods. In CCAs,
the optimal number of neighbor kis also listed in Table 2.

The recognition results on the 19 datasets are given in Table 2. The best performances are highlighted and several attrac-
tive observations can be obtained:

(1) LCA outperforms LDA/CCA on 15 of the 19 datasets, specifically achieving the maximum improvement of 15.27% on
Water, of more than 5% on Banlance, Bupa, Glass, Ionosphere, Lense and Sonar and slight improvement on the other
7 of the 15 datasets. However, on some outside of the 15 datasets, such as Vehicle and Wine, like CDA, LCA degrades
significantly in performance.

(2) Compared with CDA, LCA provides better results on 16 out of the total 19 datasets, especially on the 11 datasets
including Bupa, Dermat, Glass, Iris, Ionosphere, Lense, Soybean, Teaching, Thyroid, Wine and Waveform, LCA improves
more than 6% in classification accuracies and obtains comparable results on the other 2 datasets. Furthermore, we
need to point out that LCA has less computational cost than CDA in training stage.

(3) Although overall better than or comparable to the standard CCA in recognition performance, CCAs outperforms LCA
only on four datasets such as Vehicle, Wine, Pid and Wdbc, to some degrees from 1% to 21%. Compared with CCA
and CCAs, LCA performs best on the rest datasets.

(4) From the obtained accuracy variances of the five compared methods on each dataset, we can see that our LCA achieves
the best stability on most of the datasets.

4.2. USPS Database

4.2.1. Datasets description and experimental setting
The USPS database (http://www.cs.toronto.edu/�roweis/data.html) consists of grayscale handwritten digit images from 0

to 9, as shown in Fig. 1. Each digit contains 1100 images with 256 gray levels and their sizes are all 16 � 16. Now we select
five pairwise digits with varying difficulty for odd vs. even digits as usual in [43] to conduct our experiment.

4.2.2. Experimental results and discussion
In the experiment, we concretely select 110, 220, 330, 440, 550 instances respectively from each class for training and the

rest for test, perform 10 runs and show their averaged accuracies in Fig. 2 for classification task of each pair of selected digits.
From Fig. 2, we can obtain several observations as follows:

(1) When the number of the training instances per class is small, such as 110, LCA shows an obvious performance supe-
riority to the other four compared methods.

(2) With the increase of the training instances per class, the test accuracies of all the 5 methods are respectively improved
to different extents.

http://www.cs.toronto.edu/~roweis/data.html
http://www.cs.toronto.edu/~roweis/data.html


Fig. 1. An illustration of 10 subjects in the USPS database.
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Fig. 2. Comparison among LDA, CCA, CCAs, CDA and LCA in single and average performances on the USPS database.
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(3) When the number of the training instances per class is large enough to be able to reflect the data distribution, such as
440 and 550, most of the methods can achieve almost similar classification accuracies. However, for some relatively
difficult recognition digits such as 1vs.7, 2vs.7 and 3vs.8, LCA still keeps its superiority among the compared methods.

Finally jointly from both the average accuracies respectively in Sections 4.1 and 4.2 , we can relatively safely claim that on
the whole, our LCA maximizing the minimal individual correlation on training data yields better classification performance
than the other correlation analysis methods which maximize the total or ensemble correlation on training data.

5. Conclusion and discussion

In this paper, inspired by the large margin learning methods, we propose a new linear dimensionality reduction method
based on correlation analysis, namely large correlation analysis (LCA). Different from LDA, CCA, CCAs and CDA, LCA pays
more attention to maximizing the minimal individual correlation between each projected training instance and the corre-
sponding class label rather than the total or ensemble correlation. Then we extend it to the relaxed version and obtain a
box-constrained (convex and multivariate) quadratic programming (BQP) problem in its dual space, as a result, with strong
duality and projected Barzilai–Borwein (PBB) method, we resolve the dual problem efficiently and thus get the solution of
the original problem. The experimental results on UCI machine learning repository and USPS database show encouraging
classification performance compared with the state-of-art related works.

There are several directions of future study given as follow:

(1) Kernelization: Although all of the deduction and experimental results are based on the linear feature extraction, in
fact, they can be easily generalized to nonlinear version via the kernel tricks [41] which is fit for linearly inseparable
data.

(2) Partially paired learning: At present, CCA-type methods mainly involve paired instances (x,y), however, in practice, a
large number of additional unpaired samples (i.e. x-only instances and y-only instances) may generate due to certain
reasons such as camera occlusion in surveillance. To further utilize the prior information hidden in the additional
unpaired instances, several semi-supervised [42] extensions of CCA have been proposed, e.g., based on Tikhonov reg-
ularization [5] and Graph-Laplacian regularization [43]. We intend to further investigate partially paired data with the
idea of LCA.

(3) Sparse Learning: Sparse learning such as the l1-regularization has attracted a lot of interests in recent years in sta-
tistics, machine learning and signal processing. Some works in [44,45] proposed sparse canonical correlation analysis
(SCCA) which examines the relationship between two sets of variables and provides sparse solutions. Hence how to
incorporate sparse learning with our LCA is another interesting topic for future work.
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Appendix A. Derivation of the CCA for Gaussian distribution data

Proposition. If the random variable x � N(lx,R11), y � N(ly,R22) and z ¼ x
y

� 	
� Nðl;RÞ, where l ¼ lx

ly

� 	
;R ¼ R11 R12

R21 R22

� 	
.

Based on the expectation risk minimization and the assumption that p(x,y) is a joint unknown density function, we can perform

dimensionality reduction for the two sets of variables according to the following rule:
Z Z
XY

WT
x x�WT

y y
��� ���2

pðx;yÞdxdy
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Z Z

XY
WT

x x�WT
y y
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y

h i
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T
y

h i
Wy:
In fact, we don’t know exact the mean and the variance of the two variables, via replacing them with the sample mean and
the variance, we obtain
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ZZ
XY

WT
x x�WT

y y
��� ���2

pðx; yÞdxdy ¼ 1
n

WT
x XXT Wx � 2WT

x XYT Wy þWT
y YYT Wy

h i
:

With the constraints
RR

XY WT
x x

��� ���2
pðx; yÞdxdy ¼ 1 and

RR
XY WT

y y
��� ���2

pðx; yÞdxdy ¼ 1 , we obtain the subsequent optimization
problem:
min WT
x XXT Wx � 2WT

x XYT Wy þWT
y YYT Wy;

s:t: WT
x XXT Wx ¼ 1;

WT
y YYT Wy ¼ 1:
For its optimization, firstly using the Lagrangian multiplier method to define the following function:
LðWx;WyÞ ¼WT
x XXT Wx � 2WT

x XYT Wy þWT
y YYT Wy � k1 WT

x XXT Wx � 1

 �

� k2 WT
y YYT Wy � 1


 �
:

Then zeroing the derivatives with respect to Wx and Wy yields
@LðWx;WyÞ
@Wx

¼ 2XYT Wy � 2XXT Wx � 2k1XXT Wx ¼ 0) ð1þ k1ÞXXT Wx ¼ XYT Wy;

@LðWx;WyÞ
@Wy

¼ 2YXT Wx � 2YYT Wy � 2k2YYT Wy ¼ 0) ð1þ k2ÞYYT Wy ¼ YXT Wx:
Incorporating above two constraints leads to k1 = k2. Using k to denote both, we can find that under the Gaussian assumption,
dimensionality reduction for two sets of variables based on the above risk minimization principle is equivalent to CCA.

Appendix B. Class label encoding [35]

Motivated by the fact that the C vertices of a regular C-simplex are the most balanced and symmetricly separate points in
the (C-1)-dimensional space, here we choose the regular C-simplex vertices as the multivariate label. Let Li 2 RC�1, i = 1,
2, . . . , C be the vertices of the regular C-simplex in RC�1 and L = [L1,L2, . . . ,LC], where Li,j is an element of L in the ith row
and jth column. Firstly, let L1 = (1,0, . . . ,0)T 2 RC�1 and L1;i ¼ �1

C�1 for i = 2, . . . ,C. Then we get the first row and the first column
of the L. Secondly, we compute the next rows and columns by the following formula
Lkþ1;kþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xk

i¼1

L2
i;k

vuut ; ðB1Þ

Lkþ1;j ¼ �
Lkþ1;kþ1

C � k� 1
; j ¼ kþ 2; . . . ;C; ðB2Þ

Li;kþ1 ¼ 0; kþ 1 < i 6 C � 1; ðB3Þ
where k = 1, 2, . . . ,C � 2. It is easy to prove that
PC

i¼1Li ¼ 0; kLik ¼ 1; i ¼ 1;2; . . . ;C and
kLi � Ljk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2C
C � 1

r
ðB4Þ
i.e., these class labels have zero mean, unit norms and equal pairwise distances. For example, the correspondence class labels

for three class instances are 1
0

� �
;
�1=2ffiffiffi

3
p

=2

� �
and �1=2

�
ffiffiffi
3
p

=2

� �
respectively. If xi 2 Ck ,i = 1, 2, . . . , n, yi = Lk, k = 1, 2, . . . , C. The in-

stances in each class share a common class label as usual. So we obtain a data matrix X = [x1,x2, . . . ,xn] 2 RD�n and an asso-
ciated class label matrix Y = [y1,y2, . . . ,yn] 2 R(C�1)�n which can be used for correlation analysis in this paper.

Appendix C. The derivation of the Wolfe dual representation (31) and (32) for the Lagrangian function
LðW; n;a;lÞ ¼ 1
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