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Abstract. Spoofing with photograph or video is one of the most common manner
to circumvent a face recognition system. In this paper, we present a real-time and
non-intrusive method to address this based on individual images from a generic
webcamera. The task is formulated as a binary classification problem, in which,
however, the distribution of positive and negative are largely overlapping in the
input space, and a suitable representation space is hence of importance. Using
the Lambertian model, we propose two strategies to extract the essential infor-
mation about different surface properties of a live human face or a photograph,
in terms of latent samples. Based on these, we develop two new extensions to the
sparse logistic regression model which allow quick and accurate spoof detection.
Primary experiments on a large photo imposter database show that the proposed
method gives preferable detection performance compared to others.

1 Introduction

Biometric techniques, which rely on the inherited biometric traits taken from the user
himself for authentication, have gained wide range of applications recently [6]. Unfor-
tunately, once such biometric data is stolen or duplicated, the advantages of biometrics
become disadvantages immediately.

This situation is most commonly found in a face recognition system, where one or
some photos of a valid user can be easily obtained without even physically contacting
with him/her, say, through internet downloading or simply capturing them using a cam-
era. A 2D-image based facial recognition system can be easily spoofed by these simple
tricks and some poorly-designed systems have even been shown to be fooled by very
crude line drawings of a human face [12]. Actually, it is a very challenging task to guard
against spoofs based on a static image of a face (c.f., Fig. 1), while most effort of the
current face recognition research has been paid on the “image matching” part of the
system without caring whether the matched face is from a live human or not.

Current anti-spoofing methods against photograph or video of a valid user can be
categorized based on different criterions, such as the kinds of biometric cues are used,
whether additional devices are used, and whether human interaction is needed. A good
survey of schemes against photograph spoof can be found in [8] [19]. The most com-
monly used facial cues include the motion of the facial images such as the blinking
of eyes, and the small, involuntary movements of parts of face and head. In [19], an
eyeblink-based anti-spoofing method is proposed by integrating a structured prediction



Fig. 1. Do you know which image is captured from a photo? This illustrates the difficulty of
detecting photo spoof from a single static image. (Answer: all but the rightmost column are
photos.)

method. [10] presents a optimal-flow based method to capture the subtle motion of
face images. Although no additional devices are required in these methods, they may
encounter difficulties, for example, when a short video of the valid user is displayed
or simply shaking the photograph before the camera. [7] gives an interesting example
where eye-blinking and some extent of mouth movements can be well simulated using
just two photographs.

Other commonly used facial cues include the surface texture of the skin and the
depth information of the head. In [13], the Fourier analysis is used to capture the fre-
quency distribution of face images of a live human. [20] lists a number of measures
that could be used to characterize the optical qualities of skin from face of a live person.
If specific devices are available, near infrared images or thermal images can be con-
sidered [23]. The 3D information could also be used to provide additional protection
against spoof attempts with such devices as 3D cameras or multiple 2D cameras [2].

Besides facial cues, multi-modal information (e.g., voices or gesture etc.), various
challenge-response methods (e.g., asking the user to blink, smile or move head ) can
also be considered, but these methods need either extra devices or user involvement.
Another interesting research against photo spoof is to use a user-specific key to generate
a random matrix to distort the face template, so that a ”’stolen” face image without the
key will be almost of no use [3]. This kind of method, however, mainly focus on the
security of biometric templates instead of face liveness detection.

Despite the success of the above methods in some cases, non-intrusive methods
without extra devices and human involvement are preferable in practice, since they
could be easily integrated into an existing face recognition system, where usually only
a generic webcam is equipped.

1.1 Motivations and Contributions of This Paper

Partly due to the previously mentioned drawbacks of the facial movement based meth-
ods, in this paper we focus on the methods which rely on a single static image to do
spoof detection. Such methods can also be directly applied to deal with video spoof or
be integrated with a video-based face liveness detection method for better performance.

The challenge here, is that the appearance of human face can change drastically due
to various illumination conditions and there are also many camera-related factors that



may influence the quality of images, which makes it hard to differentiate images from a
live person from those from photos (c.f., Fig. 1). Due to these, simply asking ”what’s in
the image (e.g., human skin)” tends to be unreliable. Another strategy is to use various
image processing techniques to extract features that highlight the difference between
images from live human faces and those from photographs. In [13], a Fourier analysis
based method is proposed, in which one third of components with high frequency are
heuristically chosen as such features. This method works well when the photo images
has low definition and small size.

In this paper, the anti-photo spoof problem is formulated as a binary classification
problem, thus the statistics from the whole set of images consisting both live human
faces and photographs can be fully exploited. This strategy, however, has its own dif-
ficulty in that the distributions of positive and negative are largely overlapping in the
input space, and a suitable representation space is of importance. Actually, a real hu-
man face is different from a face in a photo mainly in two ways: 1) a real face is a
3D object while a photo is 2D by itself; 2) the surface roughness of a real face and a
photo is different. These two factors, along with others (such as the definition of photo
print and the noise introduced by the camera), usually make different image quality of
a real face and a photo face under the same imaging condition (we further assume that
both are properly focused). Hence exploiting such information would help to enlarge
the intra-class variations between client class and imposter class.

For classification, we extended the standard sparse logistic regression classifier both
nonlinearly and spatially to improve its generalization capability under the our setting
(i.e., high dimensionality and small size samples). It is shown that the nonlinear sparse
logistic regression significantly improves the anti-photo spoof performance, while the
spatial extension leads to a sparse low rank bilinear logistic regression model, which
effectively control the complexity of models without manually specify the target rank
beforehand (e.g., in PCA).

To evaluate our method, we collected a publicly available large photograph-imposter
database containing over SOK photo images from 15 subjects. Preliminary experiments
on this database show that the proposed method gives good detection performance, with
advantages of realtime testing, non-intrusion and no extra hardware requirement.

The paper is organized as follows: in Section 2, we describe in detail the proposed
method. Section 3 describes the photograph imposter database and gives the experi-
mental results. Section 4 concludes this paper.

2 The Approach

We formulate the task of detecting photograph spoof as a binary classification problem.
However, a simple PCA analysis indicates that there exist large overlapping between
the distributions of positive and negative samples (not shown). This indicates that a
suitable representation space or measure for determining whether a image arise from a
live human is of importance. We do this based on the analysis of Lambertian model [18].



2.1 The Face Imaging Model

Suppose that we are given two images, I;(z,y) and Iy (x,y), where I;(x,y) is taken
from a live human while I;(z, y) from an imposter, say, a photograph or a frame of a
video clip displayed on a laptop, and (x,y) is the position of each pixel in the image
coordinate system. A useful question to ask is: what’s the difference between I;(x, y)
and I¢(x, y) under the same illumination condition '? We examine this under the Lam-
bertian reflectance assumption, where the face surface is modeled as an ideal diffuse
reflectors, hence reflecting light according to Lambert’s cosine law [18]. In other words,
the intensity of a face image I(z,y) is described as

I(‘Tay) = fC(xay)p(xvy)Alight COSH, (1)

where f.(z,y) term depends on the underlying camera, A4y, is the intensity of the
incoming light at a particular wavelength. The p(x, y) term is the reflectance coefficient,
which represents the diffuse reflectivity of the surface at that wavelength. The cos =
n - s is the angle between the surface normal n and the incoming light ray s.

First we assume that f.(x,y) is a constant. This is reasonable for many webcams.
Then the client image I;(x,y) and imposter image I;(x,y) can be respectively ex-
pressed as,

It($>y) = pt(xvy)Alight(nt : 3)7 ()
If(fE,y) = pf(xa y)Alight(nf : S). (3)

These equations say that if under the same lighting conditions (i.e., Ajjgne, s terms
are fixed), the differences between the two images can be made evident by compar-
ing their surface properties, i.e., the surface reflectance property p;\py¢, and the surface
normal n,\n s at that point. Intuitively this is feasible since the human skin and a pho-
tograph (or the Laptop which is replaying a video clip) are made of different materials
and the smoothness of their surfaces are different as well. For example, some previous
work [13] uses the high frequency components of the given image to identify possible
spoof. This method can be considered as a rough way to approximate the p value, but
the information from n is lost. For the sake of robustness under various conditions (e.g.,
against high-definition photograph spoof), exploiting full information from a given im-
age is essential. To do this, one can write the above equations as follows,

Li(z,y) = pi(z,y)A(ng - ) £ pola, y) ez, y) )
Ii(x,y) = ps(a,y)Alng - 8) = pp(z,y) (2, y) Q)

where we denote pu(z,y) = Alight(n - 8), which is a function of the surface normal
n. Hence the information we are interested in are actually encoded in the functional
p(x,y) and p(z,y). Although we usually cannot watch the behavior of these functionals
directly, we may estimate them if a series of m samples of xi) = pi(z,y) and :EL =
wi(z,y),i = 1,2,...,m, are available. We will call these samples “latent samples”
since they are hidden by themselves, and we need a method to derive them.

! This assumption will be largely relaxed later.



2.2 Deriving Latent Samples

In this section we present two methods to derive the latent samples for our discrimina-
tive model.

Variational Retinex-based Method. To solve (4) or (5), one has to decompose a given
face image into reflectance part p(z,y) and illuminance part p(2, y), which is exactly
what most illumination invariant face recognition method does. Note that, however, for
illumination invariant face recognition, once the albedo of a face image is obtained, the
illuminance part is usually discarded. But in our case, the illuminance part is useful
since it contains information about the surface normal (c.f. (4)). In particular, for a pho-
tograph, the surface normal is mostly constant hence the lighting factor s will actually
be dominant in various /. f(x,y) images. While for a real face, both n and s will count
in p(z,y). This nature of imaging variability turns out providing useful discriminative
information about whether a p(z, y) image is from a 3D object or not.

Here we prefer a type of variational Retinex approach, in which the illuminance
w(x,y) is first principally sought within the total variational framework and the albedo
p(x,y) is then estimated through Land’s Retinex formula [11]. Typical methods in this
line include the anisotropic smoothing method by Gross et al. [4] and Logarithmic Total
Variation (LTV) smoothing by Chen et al. [1]. In this work we take the Logarithmic
Total Variation (LTV) method for experiments, where a plausible illumination image
wu(x,y) is estimated by minimizing a functional combining smoothness and fidelity
terms:

po= agmin [ [Tl A - p ©)
image

where A is the data fidelity parameter (set to 0.5 in this work). Once the p is obtained,
we estimate p through log(p(z,v)) = log(I(x,y) +1) —log(u(x,y) + 1) using Land’s
Retinex formula [11] (c.f., (4)).

Fig. 2 gives some illustration of the p image and p image decomposed in this man-
ner, from a client image and a imposter image, respectively. It can be observed that the
texture of 1y image from a photo is less rich than y; from a real face as expected.

Difference of Gaussian (DoG)-based Method. Another method is based on the in-
tuitive idea that the image of a photograph taken through a webcam is essentially an
image of a real face but passes through the camera system twice and the printing system
once. This means that compared to an image of a real human, the imposter image tends
to be more seriously distorted by the imaging system and hence has lower image quality
(i.e., missing more high frequency details) under the same imaging conditions. We may
exploit this characteristic to distinguish an imposter image and a client image.

In particular, we do this by analyzing the 2D Fourier spectra similar to [13]. But
instead of using very high frequency band which maybe too noisy, we try to exploit the
difference of image variability in the high-middle band. This is done through Difference
of Gaussian (DoG) filtering which is essentially a bandpass filter and has successfully
been applied to remove lighting variations in face images [25]. To keep as much detail
as possible without introducing noise or aliasing, we take a quite narrow inner (smaller)
Gaussian (og < 1), while the outer one might have o1 of 1-2 pixels to filter out mis-
leading low spatial frequency information. In other words, by using this preprocessing



Fig. 2. Illustration of the latent samples derived for a client image (top row) and an imposter
image (bottom row): from left to right, 1) the raw image; 2) the p image estimated with LTV ; 3)
the p image estimated with LTV; 4) the centered Fourier spectra of the raw image; 4) the centered
Fourier spectra of the image filtered with DoG.

procedure, when comparing two images, we can focus more on their major part of im-
age information without being confused by non-relevant information.

In this work, we use o9 = 0.5 and o7 = 1.0 by default. Fig. 2 gives some illustration
of two images (one client image and one imposter image) and their respective Fourier
spectra with/without DoG filtering. It can be observed that the DoG filter cleans the
noise in the high frequency areas. In addition, the client image contains richer horizontal
components in the high frequency areas than the imposter image, while the two images’
respective distributions of components in various orientations are different in the middle
band. Hence compared to the previous LT V-based method, the appearance variations of
face images are emphasized here.

2.3 Classification

In the most simple case where the photos are taken under the same lighting condition
with real faces (i.e., s = sy = s), we have p¢(z,y)\u(z,y) = (ny - s)\(ng - s).
One can see that it is the surface norms n; and ny that dominate the ratio. This implies
that one can try to first capture a real face for that specific lighting scenario then used it
as reference to reject possible photo spoofing under that scenario.

In more general case where the s; and s are different, one strategy is to first learn
K most common lighting settings where photo spoofing may happen from training sam-
ples, using such method as Singular Value Decomposition [28]. Denote these settings
as a lighting matrix S € R**¥ . One can use this S to reconstruct any ¢ € R” image
such that || © — NSv || is minimized, where N € R”*? is the surface normal matrix
to be estimated, v € R¥ is the reconstruction coefficient. The object function can be
optimized by coordinate descent method. After this, the reconstruction coefficient v can
be used as input to a classifier.

But things become more complicated if we take the illumination distribution of each
photo itself into consideration. This lighting distribution is independent with the current
lighting setting, and according to Lambertian model, it should go into the albedo part
but (depending on the setting of A ) the LTV decomposition (c.f., (6)) often allow a
significant amount of fine scene texture to leak into u, thus making the distribution of w



become rather nonlinear. Therefore, in this work we learn a classifier directly through
the obtained latent training samples without further feature extraction. In particular we
adopted the sparse logistic regression model and extend it in two ways such that it may
better fit the problem at hand.

Sparse Logistic Regression. Let x € R™ denote a sample, and y € {—1, 1} be the as-
sociated (binary) class label (we define imposter image as +1, client image -1). Logistic
regression model is given by:

1
1+ exp(—y(w'x + 1))’

Prob(y|x) = @)
where Prob(y|x) is the conditional probability of class y = 1, given the sample x,
w € R" is the weight vector, and b € R is the intercept. Suppose that we are given a set
of m training data {x;,y; }/, (c.f., Sec. 2.2), where x; € R™ denotes the i-th sample
and y; € {—1,+1} denotes the corresponding class label. The likelihood function
associated with these m samples is defined as []", Prob(y;|x;). The negative of the
log-likelihood function is called the (empirical) logistic loss, and the average logistic
loss is defined as:

1 m
loss(w,b) = —— log H Prob(y;|x;)
m
i=1

®)

% Z log(l + exp(*yi(WTXi + b))),

i=1

which is a smooth and convex function. We can determine w and b by minimizing
the average logistic loss: miny , loss(w, b), leading to a smooth convex optimization
problem. The sparse logistic regression [9, 14] add a ¢;-norm regularization to the loss
to avoid overfitting, i.e., miny, ; loss(w, b) + A||w||1. The major characteristic of this
is that it enforces a sparse solution which is desirable for our application. In addition,
there are quite a few efficient solvers for optimizing this problem, e.g., 11-log [9] and
SLEP [14]. In this paper, we propose to make use of the SLEP package [16], as it enjoys
the optimal convergence rate and works efficiently for large scale data.

Sparse Low Rank Bilinear Logistic Regression. To exploit the spatial property of
images, we can directly operate on the two-dimensional representation of images. The
goal is to learn a ’low-rank” projection matrix, or equivalently a low-rank” bilinear
function:

fr.r(X) =tr(L*XRT") = tr((LR)* X), ©)

where X € R"™¢ L € R"™ ¢ R € R*¢ and r and c denote the number of rows
and columns of the image X, respectively. Denote W = LR € R"*¢, we can rewrite
9) as fr.r(X) = tr(WTX) = (vec(W), vec(X)), leading to the traditional one-
dimensional (concatenated) linear function.

However, directly learning (9) from a set of training samples can leads to overfit-
ting, especially when m, the number of training samples is less than p = r X ¢, the
dimensionality. One standard technique is to add some penalty to control the complex-
ity of the learned W = LR € R"*¢. In this study, we impose the assumption that W is



a “low-rank” projection matrix. Given a set of training samples {X;, y;}_,, one way
to compute W = LR is to optimize:

Iiliél loss(L, R) + A\ X rank(LR), (10)

where loss(L, R) is a given loss function defined over the training samples, e.g., the
logistic loss (8). However, rank(L R) is nonconvex, and (10) is NP-hard. So instead we
propose to compute L and R via

Ilrlli}IQIIOSS(L,R) +>\1||L||2’1 +)\2HR||2’1. (11)

where || - ||2,1 is the £(2, 1)-norm of a matrix defined as the sum of the ¢2 length of
each column of this matrix. With appropriate parameters, (11) shall force a solution
where many rows of L and R are exactly zero, so that L and R are “low-rank”. As
rank(W) < max(rank(L), rank(R)), the obtained W = LR is also low-rank.

To optimize (11), we apply the block coordinate descent. That is to say, we first
fix R to obtain L via miny, ¢r(L) + A1]|L||2,1, where ¢r(L) is a convex and smooth
function with regard to L under given R. Similarly, we compute R under given L via
ming 1, (R) + Az||R]|2,1. And this process is repeated until convergence. A common
practice is to terminate the program after the change of L and R (measured in the
Frobenius norm) in the adjacent iterations is below a small value (1e-6 in the paper).

This model has several new features: 1) In contrasted with the existing low rank
bilinear discriminative method (e.g., [21]), the rank needs not to be pre-specified, but
tuned via A\; and \2?; 2) The “low-rank” projection matrix W is obtained the computa-
tionally efficient penalty || - ||2,1-norm without Singular Value Decomposition as needed
by the trace-norm or nuclear norm; 3) Recall f, r(X) = tr(L* X RT), LT have many
columns that are exactly zero, thus being able to discarding certain columns in X;’s.
Physically, this parameter matrix contains sets of learned discriminative filters for each
thin strip of the face image, thus encoding spatial information.

Nonlinear Model via Empirical Mapping. In a second extension to the sparse logistic
regression model, we make use of the explicit empirical mapping defined over the m
training samples to transform them into the features space via the kernel mapping ¢ :
x — F, thus we have F' = R™. Let X = ¢(x), we define

Z; = kernel(x,x;),j =1,2,...,m, (12)

where kernel(-, -) is a given kernel function, e.g., the Gaussian kernel (c.f. [5] for a
good account on this in the context of RBF network). With the transformed training
data {X;,y; }'™,, we can apply the sparse logistic regression discussed before for con-
structing a sparse model.

One way to look at this model is that it can be thought of as a nonparametric prob-
abilistic model since its number of parameters grows with the sample size while its

2 In the experiments, we follow a two-step procedure suggested in [17] to set the values of these
two parameters, where a small value (1e-6) is first set for both lambda’s then those coefficients
with small absolute values are removed off.



Fig. 3. Illustration of the samples from the database. In each column (from top to bottom) sam-
ples are respectively from session 1, session 2 and session 3. In each row, the left pair are from
a live human and the right from a photo. Note that it contains various appearance changes com-
monly encountered by a face recognition system (e.g., sex, illumination, with/without glasses).
All original images in the database are color pictures with the same definition of 640 x 480 pixels.

complexity is controlled by the ¢;-norm prior. This characteristic is shared by many
sparse nonlinear discriminative models in literatures, such as probabilistic Support Vec-
tor Machine (pSVM, [22]), Relevance Vector Machine (RVM, [26]) and Import Vector
Machine (IVM, [29]). The major merit of our model, however, lies in its simplicity and
its flexibility to allow a straightforward application of any efficient solver dealing with
usual sparse logistic regression problem, without any modification on them. Take the
SLEP used here for example, its computational complexity is O(m?)[15], compared to
O(m?) for pSVM, O((m + 1)) for RVM and O(m?q?) for IVM (q is the number of
import points).

3 Experiments

3.1 Database

We constructed a publicly available photograph imposter database® using a generic
cheap webcam bought from an electronic market. We collected this database in three
sessions with about 2 weeks interval between two sessions, and the place and illumina-
tion conditions of each session are different as well. Altogether 15 subjects (numbered
from 1 to 15)* were invited to attend in this work. In each session, we captured the
images of both live subjects and their photographs. Some sample images from the three
sessions are given in Fig. 3.

In particular, for each subject in each session, we used the webcam to capture a se-
ries of their face images (with frame rate 20fps and 500 images for each subject). Dur-

3 http://parnec.nuaa.edu.cn/xtan/data/NUA AImposterDB.html

* Since the major goal of this work is to distinguish a real face from a photograph, rather than
differentiate different people as the case of usual face recognition, the requirement of large
number of subjects is less demanding compared to the richness of variations contained in the
datasets.
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Fig. 4. [llustration of different photo-attacks (from left to right) : (1) move the photo horizontally,
vertically, back and front; (2) rotate the photo in depth along the vertical axis; (3) the same as (2)
but along the horizontal axis; (4) bend the photo inward and outward along the vertical axis; (5)
the same as (4) but along the horizontal axis.

ing image capturing, each subject was asked to look at the webcam frontally and with
neutral expression and no apparent movements such as eyeblink or head movement.
In other words, we try to make a live human look like a photo as much as possible
(vice versa for photograph). Some examples of the captured images are illustrated in
Fig. 3 (left column).

To collect photograph samples, we first took a high definition photo for each subject
using a usual Canon camera in a way that the face area should take at least 2/3 of the
whole area of the photograph. We then developed the photos in two ways. The first is
to use the traditional method to print them on a photographic paper with the common
size of 6.8cm x 10.2cm (small) and 8.9c¢m x 12.7¢m (bigger), respectively. In the other
way, we print each photo on a 70g A4 paper using a usual color HP printer. Based on
these, three categories of the photo-attacks are simulated before the webcam, in a way
similar to [19], as shown in Fig. 4.

3.2 Settings and Performance Measure

To evaluate our methods, we first constructed a training set and a test set from the
photo imposter database, both of which contain a number of client images and imposter
images. The training set is constructed using the images from the first two sessions and
the test set from the third session. In particular, the training set contains 889 images
from the first session and 854 images from the second session and all the available
subjects in the two sessions are involved.Hence we got 1743 images from 9 subjects
as valid biometric trait. For the imposter images of the training set, we respectively
selected 855 and 893 images from the first and the second sessions of the photograph
set, hence we got 1748 imposter images in all. The test set contains 3362 images from
live humans selected from session 3 and 5761 images from photos selected from session
3 as well. Table 1 gives some statistics of this. Note that there is no overlapping between
the training set and the test set. In addition, some subjects in the test set are not appeared
in the training set,which increases the difficulty of the problem.



Table 1. The number of images in the training set and test set.

Sessionl session2 session3 Total

Training Set
Client 889 854 0 1,743
Imposter 855 893 0 1,748
Total 1,744 1,747 0 3,491

Test Set

Client 0 0 3,362 3,362

Imposter 0 0 5,761 5,761
Total 0O 0 9,123 9,123

All the images then undergo the same geometric normalization prior to analysis:
face detected and cropped using our own Viola-Jones detector [27], rigid scaling and
image rotation to place the centers of the two eyes at fixed positions, using the eye
coordinates output from a eye localizer [24]; image cropping to 64 x 64 pixels and
conversion to 8 bit gray-scale images.

3.3 Experimental Results

Fig. 5 (Left) compares the overall performance using sparse (linear) logistic regression
(SLR) with different types of input. This figure shows that the raw image (RAW) and
the 1 image estimated with LTV [1] (LTVu) give much worse result than the other
three, i.e., p image (LTVp), DoG filtered image (DoG) and one third of the highest
frequency components in [13] (HF) (the fusion of LTVp and LTVu doesn’t make big
difference here and is not shown). This indicates that although the LTVu images are
useful as analyzed before, their discriminative capability can not be exploited using a
linear classifier.

On the other hand, the improved performance given by both LTVp and DoG shows
that these two representations helps to increase the separability of the sample space.
In addition, they both outperform HF in terms of AUC value® (respectively 0.78, 0.75
and 0.69 for the three), showing that the highest frequency components are not stable
enough due to the influence of noise or aliasing in these areas. Due to the unsatisfying
performance of raw gray-scale image and being rarely directly used in practice, we
don’t pursue this method any more in the following experiments.

To examine the effectiveness of the proposed sparse low rank bilinear logistic re-
gression (SLRBLR), we conducted a series of experiment on the DoG images (we don’t
repeat the experiment on the LTV images due to their highly nonlinear distribution). We
also tested a specific case of (11) named SLRBLRrl, by setting L € R™*!, R € R¢¥!,
i.e.,rank(W) = 1. The results are shown in Fig. 5 (Right), which shows that the sparse
low rank bilinear models (with AUC value 0.92 for SLRBLR and 0.95 for SLRBLRr1)
significant improve the performance upon the standard sparse logistic regression model
(with AUC value 0.75).

5 AUC: Area Under the ROC Curve, the larger the better.
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Fig. 5. (Left) Detection performance with various input features using the sparse (linear) logistic
regression (SLR); (Right) Performance on the DoG images with various sparse linear discrimi-

native model.
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Fig. 6. (Left) Detection performance with various input features using the sparse nonlinear logis-
tic regression. (Right) Comparison of detection rate (%) using various classification methods and

input features.

Fig. 6 (Left) gives the results if we replace the linear classifier with a nonlinear one,
i.e., our sparse nonlinear logistic regression (SNLR). This shows big performance im-
provement upon previous. In particular, the performance of LT Vu drastically improves
from 0.22 to 0.92 (in terms of AUC), which verify the effectiveness of nonlinear deci-
sion boundary. Actually, by combining the LTVp and LT Vu, we get further performance
improvement (to 0.94). Compared to others, the ROC curve of the DoG image shows
a very rapid rising tendency from the very beginning of the horizontal axis. Hence it is
considered the best option for use in practice among the methods compared here.

Fig. 6 (Right) shows the best overall classification accuracy of different types of in-
put image tested respectively using sparse linear logistic regression (SLR [14]), sparse
nonlinear logistic regression (SNLR) and probabilistic support vector machine (SVM [22]).
We obtained this by evaluating the proportion of correctly labeled samples (either client
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or imposter) among the whole 9,123 test set by properly thresholding the output of each
discriminative model. The figure shows that the components in the middle frequency
(DoG) outperforms those in the one-third of the highest frequency (HF) by removing
both the noise/alias in high frequency area and the misleading spatial information in low
frequency area. In contrast, the Fourier spectra analysis method in [13] gives a classifi-
cation rate of 76.7% (not shown in the figure) - about 10% lower than that of DoG. As
for the image decomposition method, we see that both the albedo (LTVp) and structure
(LTVu) part contribute to the discriminative capability of the system, especially when a
nonlinear model is used. Combining them slightly improves the performance.

4 Conclusions

In this work, we present a novel method for liveness detection against photo spoofing
in face recognition. We investigate the different nature of imaging variability from a
live human or a photograph based on the analysis of Lambertian model, which leads
to a new strategy to exploit the information contained in the given image. We show
that some current illumination-invariant face recognition algorithm can be modified to
collect the needed latent samples, which allows us to learn a sparse nonlinear/bilinear
discriminative model to distinguish the inherent surface properties of a photograph and
a real human face. Experiments on a large photo imposter database show that the pro-
posed method gives promising photo spoof detection performance, with advantages of
realtime testing, non-intrusion and no extra hardware requirement.

Learning the surface properties of object through samples is an classical open prob-
lem in computer vision. Although there are lots of related work in the field of texture
analysis, their goal is different from ours. We believe that our work is the first one trying
to use the learning technique to distinguish whether a given static image is from a live
human or not. We are currently investigating the possibility to integrate various texture
descriptors to further improve the performance.
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