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We propose a novel appearance-based face recognition method called the marginFace approach. By using
average neighborhood margin maximization (ANMM), the face images are mapped into a face subspace for
analysis. Different from principal component analysis (PCA) and linear discriminant analysis (LDA) which ef-
fectively see only the global Euclidean structure of face space, ANMM aims at discriminating face images of
different people based on local information. More concretely, for each face image, it pulls the neighboring
images of the same person towards it as near as possible, while simultaneously pushing the neighboring
images of different people away from it as far as possible. Moreover, we propose an automatic approach
for determining the optimal dimensionality of the embedded subspace. The kernelized (nonlinear) and
tensorized (multilinear) form of ANMM are also derived in this paper. Finally the experimental results of
applying marginFace to face recognition are presented to show the effectiveness of our method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the appearance based face recognition methods have
aroused considerable interests in image processing and computer vi-
sion fields [17,24]. Generally, these approaches treat each face image
of size n1×n2 as a vector in Rn1×n2 , which brings many problems for
practical face recognition, e.g. (1) the curse of high dimensionality is
usually a major cause of limitations of many practical technologies;
(2) the large quantities of features may even degrade the perfor-
mances of the classifiers when the size of the training set is small
compared to the number of features [10]. A common way to solve
this problem is to apply dimensionality reduction methods, among
which principal component analysis (PCA) [11] and linear discriminant
analysis (LDA) are two of the most popular ones [6].

PCA is a popular unsupervised method which aims at extracting
a subspace in which the variance of the projected data is maximized
(or, equivalently, the reconstruction error is minimized). For linearly
embedded manifolds, PCA is guaranteed to discover the intrinsic di-
mensionality of the manifold and produces a compact representa-
tion. The famous Eigenface method [24] is just based on PCA, which
uses a set of basis functions obtained by PCA to describe face images.
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However, PCA does not take the class information into account and
thus may not be reliable for classification tasks.

LDA is a supervised technique which has been shown to be more
effective than PCA in many applications. It aims to maximize the
between-class scatter and simultaneously minimize the within-class
scatter. Unfortunately, it has also been pointed out that there are still
some drawbacks existed in LDA [6], such as (1) it usually suffers from
the small sample size (SSS) problem [1] which makes the within-class
scatter matrix singular; (2) it is only optimal for the case where the
distribution of the data in each class is a Gaussian with an identical
covariance matrix; (3) LDA can only extract at most c − 1 features
(where c is the number of different classes), which is suboptimal for
many applications.

Another limitation of PCA and LDA is that they effectively see only
the linear global Euclidean structure. However, some recent research
shows that the face images may reside on a nonlinear submanifold
[21,18], which makes PCA and LDA inefficient. One way to solve this
problem is to apply the kernel based techniques [19] to develop the
nonlinear manifold learning forms of those methods [20,14]. The
other is to adopt some nonlinear methods (which are usually based
on local analysis of the data sets) directly to approximate the intrinsic
face manifold [18,9,4].

Finally, PCA and LDA take their inputs as vectorial data, but in
many real-world vision problems, the data are more naturally rep-
resented as higher-order tensors. For example, a captured image is
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a second-order tensor, i.e. matrix, and the sequential data, such as
a video sequence for event analysis, is in the form of third-order
tensor. Thus it is necessary to derive the multilinear forms of these
traditional linear feature extraction methods to handle the data as
tensors directly. Recently this research topic has received a lot of at-
tention from the image processing and computer vision community
[3,29,23], and the proposed methods have been shown to be much
more efficient than the traditional vectorial methods.

In this paper, we propose a novel supervised face recognition
method called marginFace based on a feature extraction method av-
erage neighborhood margin maximization (ANMM). The goal of ANMM
is to find a subspace such that for each face image, it can pull the
neighboring faces of the same person towards it as near as possible,
while simultaneously push the neighboring faces of different per-
sons away from it as far as possible. In such a way, each face image
in the original image space is mapped into a discriminative low-
dimensional face subspace, which is characterized by a set of feature
images, called marginFaces. We also derive the kernelized (nonlinear)
and tensorized (multilinear) forms of the marginFace method in this
paper. Finally the experimental results on face recognition are pre-
sented to show the effectiveness of our method.

It is worthwhile to highlight some aspects of the marginFace
algorithm as follows:

(1) While the goal of the Eigenface method is to preserve the global
structure of the image space, and the goal of the Fisherface
method is to preserve the global discriminative information, our
marginFace method aims to explore the discriminative informa-
tion locally, which is usually more important and effective for
face recognition tasks.

(2) Compared to the traditional Fisherface method, marginFace can
(1) find the discriminant directions without assuming the par-
ticular form of class densities, (2) avoid the small sample size
problem as there is no matrix inversion computations involved,
(3) find much more features, which is not limited to C − 1 as in
traditional LDA (C is the number of classes).

(3) marginFace can determine the optimal dimensionality of the pro-
jected space automatically. To the best of our knowledge, most
of the traditional subspace learning methods have to determine
the dimension of the projected space by either cross-validation
or exhaustive search.

The rest of this paper is organized as follows. In Section 2 we will
introduce our ANMM method in detail, and its kernelized and ten-
sorized forms will be derived in Sections 3 and 4. The experimental
results on applying marginFace method in face recognition will be
presented in Section 5. In Section 6 we will compare our method
with some related approaches, followed by the conclusions and dis-
cussions in Section 7.

2. Feature extraction by average neighborhood margin
maximization

In this section we will introduce our average neighborhood margin
maximization algorithm in detail. Like other linear feature extraction
methods, ANMM aims to learn a projection matrix W such that the
data in the projected space have high within-class similarity and
between-class separability. First let us introduce some notations and
preliminary definitions.

2.1. Preliminaries

Throughout the paper, we will use the bold lowercase characters,
e.g. xi, to represent the data vectors, and the italic uppercase char-
acters, e.g. Xi, to represent the data tensors. To introduce our ANMM

algorithm, we first need to define two types of neighborhoods for
each data point.

Definition 1 (Homogeneous neighborhood). For a data point xi, its �
nearest homogeneous neighborhood No

i is the set of � most similar1

data which are in the same class with xi.

Definition 2 (Heterogeneous neighborhood). For a data point xi, its �
nearest heterogeneous neighborhood Ne

i is the set of � most similar
data which are not in the same class with xi.

Based on Definitions 1 and 2, we can define the average neigh-
borhood margin as follows.

Definition 3 (Average neighborhood margin). The average neighbor-
hood margin �i for xi is defined as

�i =
∑

k:xk∈Ne
i

‖xi − xk‖2
|Ne

i |
−

∑

j:xj∈N
o
i ∨

xi∈No
j

‖xi − xj‖2
|No

i |
,

where | · | represents the cardinality of a set.

Literally, this margin measures the difference between the aver-
age distance from xi to the data points in its heterogeneous neigh-
borhood and the average distance from it to the data points in its
homogeneous neighborhood. Then the total average neighborhood
margin for the whole data set is defined to be

Definition 4 (Total average neighborhood margin). The total average
neighborhood margin � for the whole data set X is defined as

� =
∑
i

�i

=
∑
i

⎛
⎜⎝

∑

k:xk∈Ne
i

‖xi − xk‖2
|Ne

i |
−

∑

j:xj∈No
i

‖xi − xj‖2
|No

i |

⎞
⎟⎠ .

2.2. The algorithm

As we have stated before, the goal of ANMM is to seek for a pro-
jection matrix W ∈ Rd×l (where d is the dimensionality of the origi-
nal space, l is the dimensionality of the projected space, and usually
l>d), which can project the data points into a low dimensional space
such that the data from different classes can be well separated. Most
of the previous researches, e.g. LDA and its variants, wanted to find
a good subspace in which the different class mass can be separated
in a global way. According to [26], in general it might be hard to
find a subspace which has a good separability for the whole data set,
which motivates us to consider local methods, since empirically the
local methods may have stronger discriminative power than global
methods [2,25].

Recalling that the average neighborhood margin in Definition 3
just reflects the local separability around each data point under the
current distribution. The maximization of such a margin in the pro-
jected space can push the data points whose labels are different from
xi away from xi while pull the data points having the same class la-
bel with xi towards xi. Fig. 1 gives us an intuitive illustration of the
result of maximizing the average neighborhood margin. Therefore,
for the whole data set, we just need to maximize the total average

1 In this paper two data vectors are considered to be similar if the Euclidean
distance between them is small, two data tensors are considered to be similar if
the Frobenius norm of their difference tensor is small.
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Fig. 1. An intuitive illustration of the ANMM criterion. The yellow disk in the center represents xi . The blue disks are the data points in the homogeneous neighborhood of
xi , and the red squares are the data points in the heterogeneous neighborhood of xi . (a) shows the data distribution in the original space, (b) shows the data distribution
in the projected space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

neighborhood margin � in Definition 4, which can maximize the over-
all separability of the whole data set, and this becomes the basic idea
of ANMM.

Let yi =WTxi ∈ Rl be the image of xi in the projected space. Then

∑
i

∑

k:xk∈Ne
i

‖yi − yk‖2
|Ne

i |

= tr

⎛
⎝∑

i

∑

k:xk∈Ne
i

(yi − yk)(yi − yk)
T

|Ne
i |

⎞
⎠

= tr

⎡
⎣WT

⎛
⎝∑

i

∑

k:xk∈Ne
i

(xi − xk)(xi − xk)
T

|Ne
i |

⎞
⎠W

⎤
⎦

= WT tr(S)W, (1)

where the matrix

S =
∑
i,k:

xk∈Ne
i

(xi − xk)(xi − xk)
T

|Ne
i |

(2)

is called the scatterness matrix. Similarly, we can define the compact-
ness matrix as

C =
∑
i,j:

xj∈No
i

(xi − xj)(xi − xj)
T

|No
i |

. (3)

Then

∑
i

∑

j:xj∈No
i

‖yi − yj‖2
|No

i |
= tr(WTCW).

Therefore the total average neighborhood margin of the whole data
set in the projected space can be rewritten as

� = tr[WT (S − C)W]. (4)

If we expand W as W = (w1,w2, . . . ,wl), then

� =
l∑

k=1

wT
k (S − C)wk.

To eliminate the freedom that we can multiply W with some
nonzero scalar, we add the constraint

wT
kwk = 1,

i.e., we restrict W to be constituted of unit vectors. Thus the goal
of the ANMM algorithm is just to solve the following optimization
problem:

max
l∑

k=1

wT
k (S − C)wk

s.t. wT
kwk = 1. (5)

Using the Lagrangian method, we can easily find that the optimal
W is composed of the l eigenvectors corresponding to the largest l
eigenvalues of S − C.

2.3. Determining the optimal projection dimensionality

In the last subsection we have formulated our ANMM algorithm
and show that the optimal projection matrix W can be obtained by
eigenvalue decomposition on matrix S − C. The problem remaining
is how to determine an optimal dimensionality, i.e., l, for the pro-
jected space. To achieve such a goal, we first introduce the Ky Fan
theorem.

Theorem 1 (Ky Fan). Let H be a symmetric matrix with eigenvalues

�1 ��2 � · · · ��n,

and the corresponding eigenvectors U = [u1,u2, . . . ,un]. Then

K∑
i=1

�i = max
XTX=IK

tr(XTHX).

Based on the Ky Fan theorem, the maximum value for the total
average neighborhood margin defined in Eq. (4) under the constraint
WTW = I is

max
WTW=I

� = max
WTW=I

tr(WT (S − C)W) =
l∗∑
i=1

�i,

where

�1 ��2 � · · · ��l∗ �0��l∗+1 ��n

are the eigenvalues of thematrix S−C, i.e., the optimal dimensionality
of the projected space just corresponds to the number of nonnegative
eigenvalues of the matrix S − C.

To summarize, the main procedure of ANMM is shown in Table 1.
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Table 1
Average neighborhood margin maximization.

Input: Training set D= {(xi , yi)}Ni=1, Testing set Z= {z1, z2, . . . , zM}, Neighborhood
size |No|, |Ne|;
Output: l × M feature matrix F extracted from Z.
1. Construct the heterogeneous neighborhood and homogeneous neighborhood for
each xi;
2. Construct the scatterness matrix S and compactness matrix C using Eq. (2)
and Eq. (3) respectively;
3. Do eigenvalue decomposition on S − C, construct d × l matrix W whose
columns are composed by the
eigenvectors of S − C corresponding to its largest l
eigenvalues, where l is equal to the number of positive eigenvalues of S − C;

4. Output F = WTZ with Z = [z1, z2, . . . , zN].
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Fig. 2. Two well-separated classes of data points, in which we plot the direction
which corresponds to the largest eigenvalue of the decomposed matrices for PCA,
LDA, and ANMM. We can see that LDA, ANMM can find the most discriminative
direction. For ANMM, the eigenvalues of the matrix S−C is �1 =4001.21,�2 =18.05.

2.4. A distance metric learning perspective

Once the optimal projection matrix W ∈ Rd×l is determined, the
Euclidean distance between any pair of data points in the projected
space becomes

d(yi, yj) = ‖WTxi − WTxj‖2

= (xi − xj)
TWWT (xi − xj)

= (xi − xj)
TM(xi − xj)

= ‖xi − xj‖2M (6)

which is just a Mahalanobis distance parameterized by M = WWT ∈
Rd×d in the original space. Clearly, such a distance metric is low-rank
since l>d, and the optimal rank can be determined by the spectral
analysis of S − C as we have introduced in the last subsection.

In fact, on each projected direction wi, the total average neigh-
borhood margin is

�wi
= wT

i (S − C)wi = wT
i �iwi = �i, (7)

where �i is the eigenvalue corresponding to wi. This equation tells
us that what the eigenvalues of S−C measures are the separabilities
of the data points on the corresponding directions. The larger the
�i, the better separability of its corresponding subspace. A negative
�i indicates a poor separability of the projected space, in which the
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Fig. 3. An example of the multi-modal data set, in which one class is distributed
as two separated Gaussians, the other class is distributed as one Gaussian. We can
see that LDA is confused in this case, while the ANMM method can still find the
direction of the strongest discriminative power. The eigenvalues for S − C in this
case is �1 = 7824.06,�2 = 1933.76.

data from different classes cannot be discriminated. Therefore, the
method that we use to construct W in Section 2.3 is just to select
the l∗ projected directions with the best separabilities.

Figs. 2 and 3 show us two toy examples for comparing ANMM
with the traditional PCA and LDA methods, from which we can
clearly see that (1) PCA only aims to find the direction in which
the data structure is maximally preserved, and there may not exist
any discrimination on such direction; (2) LDA can find the best dis-
criminative direction when the data from each class are distributed
as Gaussians with equivalent covariance matrices, but it may con-
fuse when the data distribution is more complicated; (3) ANMM
can find the discriminative directions based on local analysis, and
it does not make any assumptions on the distributions of the data
points. Moreover, as we analyzed above, the direction corresponds
to the largest eigenvalue possesses the maximum discriminative
power.

3. Nonlinearization via kernelization

In this section, we will extend the ANMM algorithm to the non-
linear case via the kernel method [19]. More formally, we will first
map the data set from the original space Rd to a high (usually in-
finite) dimensional feature space F through a nonlinear mapping
� : Rd −→ F, and apply linear ANMM there.

In the feature space F, the Euclidean distance between �(xi) and
�(xj) can be computed as

‖�(xi) − �(xj)‖ =
√
(�(xi) − �(xj))

T (�(xi) − �(xj))

=
√
Kii + Kjj − 2Kij,

where Kij = �(xi)
T�(xj) is the (i, j)-th entry of the kernel matrix K.

Thus we can use K to find the heterogeneous neighborhood and homo-
geneous neighborhood for each xi in the feature space, and the total
average neighborhood margin becomes

�� =
l∑

k=1

wT
k (S

� − C�)wk, (8)
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where

S� =
∑
i,k:

�(xk)∈Ne
�(xi )

(�(xi) − �(xk))(�(xi) − �(xk))
T

|Ne
�(xi)|

,

C� =
∑
i,j:

�(xj)∈No
�(xi )

(�(xi) − �(xj))(�(xi) − �(xj))
T

|No
�(xi)|

,

where Ne
�(xi) and No

�(xi) are the heterogeneous and homogeneous
neighborhood of �(xi). It is impossible to compute S� and C� di-
rectly since we usually do not know the explicit form of �. To
avoid such a problem, we notice that each wk lies in the span of
�(xi),�(x2), . . . ,�(xN), i.e.,

wk =
N∑

p=1

�k
p�(xp).

Therefore

wT
k�(xi) =

N∑
p=1

�k
p�(xp)

T�(xi) = (ak)TK·i,

where ak is a column vector with its p-th entry equal to �k
p, K·i is the

i-th column of K. Thus

wT
k (�(xi) − �(xj))(�(xi) − �(xj))

Twk = (ak)T (K·i − K·j)(K·i − K·j)
Tak.

Define the matrices

S̃� =
∑
i,k:

�(xk)∈Ne
�(xi )

(K·i − K·k)(K·i − K·k)
T

|Ne
�(xi)|

, (9)

C̃� =
∑
i,j:

�(xj)∈No
�(xi )

(K·i − K·j)(K·i − K·j)
T

|No
�(xi)|

, (10)

then

�� =
l∑

k=1

wT
k (S

� − C�)wk =
l∑

k=1

(wkS
�wk − wkC

�wk)

=
l∑

k=1

(ak)T (S̃� − C̃�)ak. (11)

Similar to Eq. (5), we also add the constraints that (ak)T (ak)=1 (k=
1, 2, . . . , l). Then the optimal (ak)'s are the eigenvectors of S̃� − C̃�

corresponding to its largest l eigenvalues. For a new test point z, its
k-th extracted feature can be computed by

wT
k�(z) =

N∑
p=1

�k
p�(xp)

T�(z) = (ak)TKt
·z, (12)

where we use Kt to denote the kernel matrix between the training
set and the testing set.

We can apply a method similar to the one introduced in Section
2.3 to determine the optimal dimensionality of the projected space
for kernel average neighborhoodmarginmaximization (KANMM).More
concretely, sincewhatwewant tomaximize is �� in Eq. (11), which is
equivalent to the sum of the largest l eigenvalues of S̃�−C̃� according
to the Ky Fan theorem. Therefore the optimal dimensionality l∗ can
be just set to the number of positive eigenvalues of S̃� − C̃�.

The main procedure kernel average neighborhood margin maxi-
mization algorithm is summarized in Table 2.

Table 2
Kernel average neighborhood margin maximization.

Input: Training set D= {(xi , yi)}Ni=1, Testing set Z= {z1, z2, . . . , zM}, Neighborhood
size

|No
�|, |Ne

�|, Kernel parameter h;
Output: l × M feature matrix F extracted from Z.
1. Construct the kernel matrix K on the training set;
2. Construct the heterogeneous neighborhood and homogeneous neighborhood for
each �(xi);
3. Compute S̃� and C̃� using Eq. (9) and Eq. (10) respectively;
4. Do eigenvalue decomposition on S̃� − C̃� , store the eigenvectors {a1,a2, . . . ,al}

corresponding to its l positive eigenvalues;
5. Construct the kernel matrix between the training set and the testing set Kt

with its (i, j)-th
entryKt

ij = �(xi)
T�(zj).

6. Output F� with F�
ij = (ai)TKt

·j .

4. Multilinearization via tensorization

Till now the ANMM method we have introduced is based on the
basic assumption that the data are in vectorized representations.
Therefore it is necessary to derive the tensor form of our ANMM
method. First let us introduce some notations and definitions.

Let A be a tensor of d1 × d2 × · · · × dK . The order of A is K and the
f -th dimension (or mode) of A is of size df . A single entry within a
tensor is denoted by Ai1i2 . . .iK .

Definition 5 (Scalar product). The scalar product 〈A,B〉 of two tensors
A,B ∈ Rd1×d2×···×dK is defined as

〈A,B〉 =
∑
i1

∑
i2

· · ·
∑
iK

Ai1i2 . . .iK B
∗
i1i2 . . .iK ,

where ∗ denotes the complex conjugation. Furthermore, the Frobenius
norm of a tensor A is defined as

‖A‖F =
√

〈A,A〉.

Definition 6 (f -Mode product). The f -mode product of a tensor A ∈
Rd1×d2×···×dK and a matrix U ∈ Rdf ×gf is an d1 × d2 × · · · × df−1 × gf ×
df+1 × · · · × dK tensor denoted as A×fU, where the corresponding
entries are given by

(A×fU)i1 . . .if−1jf if+1 . . .iK =
∑
if

Ai1 . . .if−1if if+1 . . .iKUif jf .

Definition 7 (f -Mode unfolding). Let A be a d1 × · · · × dK tensor and
(�1, . . . ,�K−1) be any permutation of the entries of the set {1, . . . , f −
1, f+1, . . . ,K}. The f -mode unfolding of the tensor A into a df ×

∏K−1
l=1 d�l

matrix, denoted by A(f ), is defined as

A ∈ Rd1×···×dK ⇒fA
(f ) ∈ Rdf ×

∏K−1
l=1 d�l ,

where A(f )
if j

= Ai1 . . .iK with

j = 1 +
K−1∑

l=1

(i�l − 1)
l−1∏

l′=1

d�l′ .

The tensor based criterion for ANMM is that, given N data points
X1, . . . ,XN embedded in a tensor space Rd1×d2×···×dK , we want to pur-
sue K optimal interrelated projection matrices Ui ∈ Rli×di (li <di, i=
1, 2, . . . ,K), which maximize the average neighborhood margin mea-
sured in the tensor metric. That is

� =
∑
i

⎛
⎜⎝

∑

j:Xj∈No
i

‖Yi − Yj‖2F
|No

i |
−

∑

k:Xk∈Ne
i

‖Yi − Yk‖2F
|Ne

i |

⎞
⎟⎠ ,
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where Yi =Xi×1U1×2U2 × · · ·×KUK . Note that directly maximizing �
is almost infeasible since it is a higher-order optimization problem.
Generally such type of problems can be solved approximately by
employing an iterative scheme which was originally proposed by
[32] for low-rank approximation of second-order tensors. Later [27]
extended it for higher-order tensors. In the following we will adopt
such an iterative scheme to solve the optimization problem.

Given U1,U2, . . . ,Uf−1,Uf+1, . . . ,UK , let

Yf
i = Xi×1U1 × · · ·×f−1Uf−1×f+1Uf+1 × · · · ×KUK . (13)

Then, by the corresponding f -mode unfolding, we can get Yf
i ⇒fY

(f )
i .

Moreover, we can easily derive that

‖Yf
i ×fUf ‖F = ‖(Y(f )

i )TUf ‖F .

Therefore we have

‖Yi − Yj‖2F = ‖Xi×1U1 × · · · ×KUK − Xj×1U1 × · · ·×KUK‖2F
= ‖Yf

i ×fUf − Yf
j ×fUf ‖2F

= ‖(Y(f )
i )TUf − (Y(f )

j )TUf ‖2F
= tr[UT

f (Y
(f )
i − Y(f )

j )(Y(f )
i − Y(f )

j )TUf ]

Then knowing U1, . . . ,Uf−1,Uf+1, . . . ,UK , we can rewrite the com-
pactness matrix and scatterness matrix in tensor ANMM as

S =
∑
i,k:

xk∈Ne
i

(Y(f )
i − Y(f )

k )(Y(f )
i − Y(f )

k )T

|Ne
i |

, (14)

C =
∑
i,j:

xk∈No
i

(Y(f )
i − Y(f )

j )(Y(f )
i − Y(f )

j )T

|No
i |

, (15)

and our optimization problem (with respect to Uf ) becomes

max
Uf

tr[UT
f (S − C)Uf ]. (16)

Let us expand Uf as Uf = (uf1,uf2, . . . ,uflf ) with ufi corresponding
to the i-th column of Uf , then Eq. (16) can be rewritten as

max
lf∑
i=1

uT
fi(S − C)ufi. (17)

We also add the constraint that uT
fiufi = 1 to restrict the scale of

Uf . Then the above optimization problem can be efficiently solved
via eigenvalue decomposition, and the optimal lf can be determined
by the number of positive eigenvalues of S − C.

The main procedure of the tensor average neighborhood margin
maximization (TANMM) is summarized in Table 3.

5. Experiments

In this section, we will carry out a set of experiments to show
the effectiveness of our marginFace method for face representation
and recognition.

5.1. Face representation using marginFaces

As we introduced before, usually a face image of sizem×n can be
described as a point in them×n-dimensional image space. However,
due to the unwanted variations resulting from changes in lighting,
facial expression, and pose, the original image space might not be a
good space for visual representation and recognition.

Table 3
Tensor average neighborhood margin maximization.

Input: Training set D= {(Xi , yi)}Ni=1, Testing set Z= {Z1, Z2, . . . , ZM}, where
Xi , Zj ∈ R

d1×d2×···×dK , Neighborhood size |No|, |Ne|, Iteration steps Tmax ,
Difference 	;

Output: Feature tensors {Fi}Mi=1 extracted from Z, where Fi ∈ R
l1×l2×···×lK .

1. Initialize U0
1 = Id1 ,U

0
2 = Id2 , . . . ,U

0
K = IdK , where Idi represents the di × di

1. identity matrix;
2. For t = 1, 2, . . . , Tmax do

For f = 1, 2, . . . ,K do
(a). Compute Yf

i by Eq. (13);
(b). Yf

i ⇒fY
(f )
i ;

(c). Compute S and C using Eq. (14) and (15);
(d). Do eigenvalue decomposition on S − C: (S − C)Ut

f = Ut
f
f with Ut

f ∈ R
df ×lf ,

and lf is equal to the number of positive eigenvalues of S − C;
(f). if ‖Ut

f − Ut−1
f ‖< 	, break;

End for.
End for.

3. Output Fi = Zi×1Ut
1 · · · ×KUt

K .

In Section 2, we have discussed how to learn a good discrimina-
tive subspace based on ANMM. The eigenvectors spanning such sub-
space can be obtained via eigenvalue decomposition of S − C which
are defined in Eqs. (2) and (3). We can resize these eigenvectors and
display them as images. Using the ORL face database (see the intro-
duction in the next subsection) as the training set, we represent its
first 10 marginFaces in Fig. 7(c), together with its first 10 Eigenfaces
and Fisherfaces. From the figures we can clearly see that the discrim-
inative information contained in marginFaces is much richer than in
Eigenfaces and Fisherfaces.

5.2. Face recognition using marginFaces

In this subsection, we investigate the performance of our pro-
posed ANMM, kernel ANMM and tensor ANMM methods for face
recognition. We have done three groups of experiments to achieve
this goal:

(1) Linear methods. In this set of experiments, the performance
of original ANMM is compared with the traditional PCA [24]
method, LDA (PCA + LDA) method [1], and three margin based
methods, namely the maximum margin criterion (MMC) method
[12], the stepwise nonparametric maximum margin criterion
(SNMMC) method [15] and the marginal Fisher analysis (MFA)
method [28].

(2) Kernel methods. In this set of experiments, the performance of
the KANMM method is compared with the KPCA and the KDA
method [31].

(3) Tensor methods. In this set of experiments, the performance of
the tensor ANMM method is compared with the tensor PCA
(TPCA) and the tensor LDA (TLDA) methods [3].

In this study, three face data set are used:

(1) The ORL face data set.2 There are 10 images for each of the 40
human subjects, which were taken at different times, varying
the lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). The images were
taken with a tolerance for some tilting and rotation of the face
up to 20◦. The original images (with 256 gray levels) have size
92 × 112, which are resized to 32 × 32 for efficiency.

2 http://www.uk.research.att.com/facedatabase.html

http://www.uk.research.att.com/facedatabase.html
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Fig. 4. Some sample faces of the ORL data set.

Fig. 5. Some sample faces of the YALE data set.

(2) The Yale face data set.3 It contains 11 grayscale images for
each of the 15 individuals. The images demonstrate variations in
lighting condition (left-light, center-light, right-light), facial ex-
pression (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses. In our experiment, the images were also
resized to 32 × 32.

(3) The CMU PIE face data set [22]. It contains 68 individuals with
41,368 face images as a whole. The face images were captured by
13 synchronized cameras and 21 flashes, under varying pose, il-
lumination, and expression. In our experiments, five near frontal
poses (C05, C07, C09, C27, C29) are selected under different il-
luminations, lighting and expressions which leaves us 170 near
frontal face images for each individual, and all the images were
also resized to 32 × 32.

In all the experiments, preprocessing to locate the faces was ap-
plied. Original images were normalized (in scale and orientation)
such that the two eyes were aligned at the same position. Then, the
facial areas were cropped into the final images for recognition. Some
sample face images of the three face databases are shown in Figs. 4,
5, and 6, respectively.

The free parameters for the tested methods were determined in
the following ways:

(1) For the ANMM-series methods (including ANMM, KANMM,
TANMM), the sizes of the homogeneous and heterogeneous
neighborhoods for each data point are all set by fivefold cross-
validation from {5, 10, 15, 20}.4 For MFA, when constructing
the intrinsic graph and penalty graph, we also set the with-in
class and between-class neighborhood size by fivefold cross-
validation from {5, 10, 15, 20}.

(2) For the kernel based methods, we all adopt the Gaussian kernel,
and the variance of the Gaussian kernel were set by fivefold

3 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
4 The fivefold cross-validation proceeds like this, we first split the whole data

set into a training set and a testing set, then we take the training set and split it into
five folds. During the cross-validation, we take four folds for training and the other
four folds for testing, and repeat the process 4 times and choose the parameter
settings with the highest average accuracy. Then the parameter will be used to learn
the projection direction from the whole training set and classify the testing set.

cross-validation from

{4−4, 4−3, 4−2, 4−1, 1, 4, 42, 43, 44}.

(3) For the tensor based methods, we require that the projected im-
ages are also square, i.e., of dimension r×rwith r=min{l∗1, l∗2}, and
l∗1, l

∗
2 are the optimal dimensionalities obtained from the TANMM

algorithm in Table 3.

After setting all the free parameters, we first project the face im-
ages into a low-dimensional space by different methods (for ANMM-
series methods, the final dimensionalities of the embedded data
are determined automatically by the methods introduced in Tables
1–3,5 for other methods, the final dimensionalities are set by ex-
haustive search as in traditional approaches). For linear methods and
kernel methods, we first vectorize the training images and obtain
the low-dimensional embeddings of them, then the nearest-neighbor
classifier is employed to perform classification, and the standard Eu-
clidean distance is used. For tensor based methods, we treat each
image as an 2D tensor and obtain the low-dimensional embeddings
of the training images in an 2D space, finally the nearest neighbor
classifier with Euclidean distance is also employed to perform clas-
sification.

The experimental results of the linear methods on the three data
sets are shown in Figs. 8, 9 and 10, respectively. In all the figures,
the abscissas represent the projected dimensions, and the ordinates
are the average recognition accuracies of 50 independent runs. From
the figures we observe that:

• The discriminative analysis based methods perform clearly better
than PCA as they incorporates the label information.

• MMC and PCA+LDA usually performs similar to each other, how-
ever, MMC can extract more features than LDA as it avoids the
singularity problem.

• The methods that explore the local information contained in the
data set (ANMM,MFA and SNMMC) usually outperforms the global
methods (MMC, LDA).

• ANMM performs similarly with MFA and SNMMC when the train-
ing data set is small, since in this case the margin may not be
accurately estimated. When the training set size grows, ANMM
performs much better.

• The discrimination power of ANMM will be enhanced with the
increase of final projected dimensionality, but it will not increase
all the time. When the final dimensionality is higher than some
threshold, the final classification accuracy will stand still.

Table 4 shows the experimental results of all the methods on
three data sets, where the value in each entry represents the average
recognition accuracy (in percentages) of 50 independent trials, and
the number in brackets is the corresponding projected dimension.
The table shows that the ANMM-series methods can perform better
than those traditional methods on the three data sets.

In summary, we can see that on these three standard benchmark
data sets, our algorithm all outperforms other competitors, in spite
of the variations on the poses and lightening conditions. One pos-
sible reason is because our ANMM algorithm can capture the local
discriminality of the data set very well.

Besides, we also conduct an experiment on testing how will our
algorithm performs with the increasing of subjects. We use the CMU

5 Specifically, for ANMM, the dimensionality equals the number of nonnegative
eigenvalues of S − C defined in Eqs. (2) and (3); for KANMM, the dimensionality
equals the number of nonnegative eigenvalues of S̃�−C̃� defined in Eqs. (9) and (10);
for TANMM, the optimal dimensionality of each projection matrix is determined by
the nonnegative eigenvalues of S − C defined in Eqs. (14) and (15).

http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Fig. 6. Some sample faces of the PIE data set.

Fig. 7. The first 10. (a) Eigenfaces. (b) Fisherfaces. (c) marginFaces of the ORL data set.
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Fig. 8. Face recognition accuracies on the ORL data set with 2, 3, 4 images for each individual randomly selected for training.
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Fig. 9. Face recognition accuracies on the Yale data set with 2, 3, 4 images per individual randomly selected for training.

PIE database as our experimental data set, which contains 68 subjects
as we mentioned before. In our experiment, we fist select a subset
which only contains the face images of i subjects (i=2, 3, . . . , 67, 68).
For each subset, 10 images per subject are randomly selected for
training, and the rest of the images are used for testing. Such process
is repeated 50 times and the averaged recognition accuracy is re-
ported in Fig. 11. From the figure we can see that with the increasing
of subjects, the recognition accuracy of our algorithm will decrease.
The reason for this is because that when the number of subjects
increases, the data patterns contained in the training set will also
increase which will make the data distribution within each neigh-
borhood more complicated. Accordingly the performance of our al-
gorithm could be affected. Note that the range of the vertical axis
is small and thus makes the figure looks bad, in fact it is consistent
with the results in Fig. 10 and Table 4.

5.3. Potential applications in face verification

In the final part of the experiments, we investigate the potential
of our algorithm to the face verification task. The protocol of our face
verification system is the same as in [16]. In our experiments, we
first split all data sets into two parts: training set and as test set, then
we project the face images into the learned subspace and compute
the template vector for each class (subject) from the training set
(we selected the mean vector). In the third step we compute the
acceptance threshold using the training images and compute the

expected ROC curves as function of the threshold value. Finally we
use the testing set to plot the ROC curves.

In our experiments we just use a single threshold � for all the
subjects, such that the claimed subject will be accepted if

d< � · w,

where d is the Euclidean distance from the candidate pattern to the
template, and w is the weight of the corresponding subject class,
which is computed by the averaged Euclidean distance of all patterns
in the training set from the template for any given subject class.

We conduct experiments on the ORL and Yale data sets. The ORL
data set was subdivided into a training set, made up of five images
per class (200 images), and a test set, made up of five images per
class (200 images). In order to assess verification performances, we
used all possible combinations of five images out of 10 to generate
the training set (252 cases). Reported results in Fig. 12 refer to the
average performances in such 252 cases.

The Yale data set was subdivided into a training set, made up
of five images per class (75 images), and a test set, made up of six
images per class (90 images). In order to evaluate the verification
performances, we used all possible combinations of five images out
of 11 images to generate the training set (330 cases). Reported results
in Fig. 13 refer to the average performances in such 330 cases.

In both Figs. 12 and 13, the x-axis represents the false acceptance
rate (FAR) and the y-axis represents the false rejection rate (FRR).
For comparison, we also depict the results of PCA and LDA. From
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Fig. 10. Face recognition accuracies on the CMU PIE data set with 5, 10, 20 images per individual randomly selected for training.

Table 4
Face recognition results on three data sets (%).

Method ORL Yale CMU PIE

2 Train 3 Train 4 Train 2 Train 3 Train 4 Train 5 Train 10 Train 20 Train

PCA 54.35(56) 64.71(64) 71.54(36) 45.19(37) 51.91(35) 56.30(40) 46.64(204) 54.72(213) 67.17(241)
LDA 77.36(28) 86.96(39) 91.71(39) 46.04(9) 59.25(13) 68.90(12) 57.05(62) 76.75(62) 88.06(61)
MMC 77.73(54) 85.98(29) 91.26(52) 46.64(54) 58.80(56) 71.67(39) 57.05(210) 77.56(215) 85.54(195)
SNMMC 79.23(49) 87.68(54) 93.59(36) 49.05(49) 66.31(49) 78.57(47) 66.45(223) 80.28(213) 91.20(202)
MFA 77.34(41) 87.19(33) 92.19(33) 49.56(38) 64.60(38) 76.05(39) 63.60(210) 80.69(232) 88.69(205)
ANMM 82.13(37) 89.13(41) 95.84(43) 50.35(41) 67.87(38) 80.69(41) 70.05(222) 82.08(203) 93.46(205)

KPCA 64.23(50) 75.25(54) 79.26(60) 49.34(45) 55.78(47) 60.72(54) 52.35(341) 60.12(384) 72.25(256)
KDA 80.29(38) 89.13(36) 93.12(38) 52.35(14) 64.89(13) 71.95(14) 62.13(67) 81.27(66) 92.11(65)
KANMM 85.46(50) 92.21(39) 96.13(53) 54.62(54) 69.25(66) 80.77(62) 72.01(302) 82.41(280) 93.67(218)

TPCA 59.22(102) 71.25(122) 79.86(102) 50.15(72) 57.23(112) 62.30(102) 51.17(102) 56.65(132) 69.09(112)
TLDA 80.68(92) 89.28(112) 93.37(82) 51.25(92) 66.19(102) 75.88(92) 60.61(122) 80.15(142) 92.75(82)
TANMM 85.87(102) 92.54(92) 96.22(112) 55.31(112) 70.43(82) 81.56(102) 73.02(122) 82.78(92) 94.32(112)

Figs. 12 and 13 we can see that our ANMM algorithm outperforms
PCA and LDA in both data sets, which suggests its potential applica-
tion in face verification task.

6. Related works

In this section we will briefly review some linear feature extrac-
tion methods that are closely related to ANMM, and discuss their
relations with ANMM.

6.1. LDA and its variants

Traditional LDA [6] learns the projection matrix W by maximizing
the following criterion:

J = |WTSbW|
|WTSwW| ,
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Fig. 11. Face recognition accuracies on the CMU PIE data set with increasing subjects.
The x-axis represents the number of subjects in the experimental data set, and the
y-axis is the recognition accuracy averaged over 50 independent runs with 10 faces
per subjects used for training.
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Fig. 12. For the ORL data set, the average ROC curves of the individual algorithms
(PCA, LDA and ANMM). In order to assess verification performances, we used all
possible combinations of five images out of 10 images to generate the training set.
The ROC curve refers to the average of the 252 cases considered.

where Sb = ∑c
k=1pk(mk − m)(mk − m)T is the between-class scat-

ter matrix, where pk and mk are the prior and mean of class k,
and m is the mean of the entire data set. Sw = ∑c

k=1pkSk is the
within-class scatter matrix with Sk being the covariance matrix of
class k.

It has been shown that J can be maximized whenW is constituted
by the eigenvectors of S−1

w Sb corresponding to its l largest eigenvalues
[6]. However, when the size of the data set is small, Sw will become
singular. Then S−1

w does not exist and the small sample size problem
occurs. Many approaches have been proposed to solve such a prob-
lem, such as PCA + LDA [1], null space LDA [13], direct LDA [33], etc.
Li et al. [12] further proposed an efficient and robust linear feature
extraction method which aims to maximize the following criterion
which was called a margin in [12]:

J= tr(WT (Sb − Sw)W), (18)
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Fig. 13. For the Yale data set, the average ROC curves of the individual algorithms
(PCA, LDA and ANMM). In order to assess verification performances, we used all
possible combinations of five images out of 11 images to generate the training set.
The ROC curve refers to the average of the 330 cases considered.

where tr(·) denotes thematrix trace. We can see that there is no need
for computing any matrix inverse in optimizing the above criterion.
However, such a margin is lack of geometric intuitions.

Another limitation of traditional LDA is its implicit Gaussian as-
sumption of the class conditional densities. To solve the problem,
Fukunaga et al. [6] proposed the nonparametric discriminant analysis
(NDA) method which defines a different between-class scatter matrix.
Qiu et al. [15] further extended the NDAmethod and proposed a step-
wise nonparametric margin maximization criterion approach, which
tries to maximize

J=
N∑
i=1

wi(‖�E
i ‖2 − ‖�I

i‖2) (19)

in the transformed space, where ‖�E
i ‖ is the distance between xi and

its nearest neighbor in the different class, ‖�I
i‖ is the distance be-

tween xi and its furthest neighbor in the same class. The problem
is that using just the nearest (or furthest) neighbor for defining the
marginmay cause the algorithm sensitive to outliers. The experimen-
tal results in Section 5.2 show that our ANMM method can clearly
outperform the SNMMC method. Moreover, the stepwise procedure
for maximizing J is time consuming.

6.2. Geometrical methods

Geometrical methods are another family of appearance-based
face recognition methods which aim to analyze the face manifolds
using the graph theory [28]. Generally, the goal of these methods is
to solve the following optimization problem:

min
W

tr(WTXLXTW)

s.t. tr(WTXBXWT ) = I, (20)

where X= [x1,x2, . . . ,xn] is the data matrix, L is some Laplacian ma-
trix defined on the data graph, and B is the constraint matrix to avoid
the trivial solutions. It can be easily observed that the solution of
the above problem can be obtained by a generalized eigenvalue de-
composition procedure. Some typical approaches include He et al.'s
Laplacianfacemethod [9], Cai et al.'s orthogonal-Laplacianfacemethod
[4], Chen et al.'s local discriminant embedding (LDE) approach [5] and
Yan et al.'s marginal Fisher analysis method [28]. The only difference
between those methods is that they used different Laplacians and
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constraint matrices. However, all these methods still suffers from
the singularity problem since they cannot guarantee that XBXT is
nonsingular, and usually a PCA preprocessing step is still needed.

6.3. Metric learning approaches

As we introduced in Section 2.4, from another point of view,
linear feature extraction can also be treated as learning a proper
Mahalanobis distance between pairwise points, since

‖yi − yj‖2 = ‖WT (xi − xj)‖2 = (xi − xj)
TWWT (xi − xj).

Let M = WWT , then

‖yi − yj‖2 = (xi − xj)
TM(xi − xj).

Therefore, learning the projection matrix W is equivalent to
learn an efficient Mahalanobis distance, or, more concretely, learn a
proper M.

Goldberger et al. [8] proposed a probabilistic supervised metric
learning method called neighborhood component analysis. However,
their optimization criterion is nonconvex and the gradient ascent
iteration is computationally rather inefficient. Globerson et al. [7]
proposed the maximally collapsing metric learning (MCML) method
to improve NCA, whose optimization criterion is convex, but from
the feature extraction perspective, they require the data dimension
in the projection space should be the same as the dimension of the
original space, i.e., there is no dimensionality reduction in MCML.
Weinberger et al. [25] proposed a large margin criterion to learn a
proper M for k nearest neighbor classifier, and optimize it through a
semidefinite programming (SDP) procedure. Unfortunately, the com-
putational burden of SDP is high, which limits its potential applica-
tions in high-dimensional data sets.

7. Conclusions and discussions

In this paper we proposed a novel supervised linear feature ex-
traction method named average neighborhood margin maximization.
For each data point, ANMM aims at pulling the neighboring points
with the same class label towards it as near as possible, while si-
multaneously pushing the neighboring points with different labels
away from it as far as possible. Moreover, as many computer vision
and pattern recognition problems are intrinsically nonlinear or mul-
tilinear, we also derive the kernelized and tensorized counterparts
of ANMM. Finally the experimental results on face recognition are
presented to show the effectiveness of our proposed approaches.

As we mentioned in Section 6, linear feature extraction methods
can also be viewed as learning a proper Mahalanobis distance in the
original data space. Thus ANMM can also be used for distance metric
learning. From such a viewpoint, our algorithm is more efficient in
that it only needs to learn the transformation matrix, but not the
whole covariance matrix as in traditional metric learning algorithms
[25].
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