
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 
 

In this paper, we propose a class of novel nonlinear robust 
filters for image denoising by incorporating kernel 
-induced measures into classical linear mean filter. 
Particularly, we place more focus on Gaussian kernel 
based filter (GK) due to its simplicity. The GK filter not 
only generalizes and makes the original linear mean filter 
highly resistant to outliers but also outperforms a typical 
and powerful Mean-LogCauchy filter recently developed 
by Hamza et al in the mixed noise removal in certain 
specific conditions in the normalized mean square error 
(NMSE) sense. Also the experimental results illustrate 
that the kernel-based nonlinear filters are promising. 
 
 
1. Formulation of Problem 
 
Image denoising is an important research field of image 
processing. Its key idea is to build a proper model for 
underlying random noise distributions in a noisy image 
and then to use distribution-oriented filters to remove the 
noise from the image of interest. Among various noise 
models, the additive noise model is by far the most 
popular. It can be represented as: 

n
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where {Si} is a discrete n-dimensional deterministic 
sequence corrupted by the zero-mean noise sequence{Vi} 
and {Xi} is the observed sequence. The objective is to 
estimate the sequence Si based on Yi=F(Xi), where F is a 
filtering operator. We now assume that noise probability 
distribution P is a scaled version of a member of Pε such 
that Pε=(1-ε)G+εS, where G is Gaussian ( )2,0 GN σ , and S 
is SαS (Symmetric α-Stable) with location θ and 
dispersion γS, and the characteristic function )(tϕ  of Pε 

is defined by [1,2] 
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where the parameter α controls how impulsive the 
distribution is.  
Due to simple computational structure and the efficiency 
in removing the additive Gaussian noise, linear filters 
such as the standard mean filter are popular in image 
denoising. But besides removing noise, these filters also 
tend to damage image details and perform poorly in the 
presence of impulsive noise. Nonlinear filters such as the 
standard median filter are robust, not sensitive to outliers, 
and preserve image details better in the same case. In 
practice, the noise is usually not simply pure Gaussian or 
impulsive noise but a mixed noise with the distribution 
similar to P, the individual mean or median filter is now 
not an ideal denoising tool anymore, which has motivated 
researchers to seek more appropriate filters by using their 
(or their variant) convex combination to get a 
performance balance between the mean and median filters 
in the mixed noise environment. Among them (such as the 
mean-median filter [2], the mean-relaxed median filter [2], 
Wilcoxon and Hodges-Lehmann filters [3]), the 
mean-LogCauchy (MLC) filter recently developed [2], a 
convex combination of the mean and the LogCauchy 
filters, has experimentally been proven capable to achieve 
best performance in removing the mixed noise. Its 
definition is as follows: 
Let W be a sliding window of size 2N+1, 

{ }WrXW rii ∈= + :  be the window data sequence 
centered at location i. The MLC output is given by 

)()1()( iiii WLCWWMLCY γγ λλ +−==      (3) 

where ]1,0[∈λ , γ is the dispersion of a Cauchy 

distribution, 1
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mean filter and given by 
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−∑  , and the output of the 

LogCauchy (LC) filter is defined as a solution of the 
following minimum or equivalently a maximum 
likelihood estimation problem 
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Below for convenience of explanation, we also give the 
output definition of the median filter 
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From the definitions of the above filters, it is not difficult 
to find that the outputs of the mean, median and LC filters 
result from optimizing the corresponding objective 
functions associated with the Euclidian, Laplacian and 
Cauchy measures. In terms of Huber robust statistics [9], 
it is shown that the latter two measures are robust and can 
produce nonlinear optimal estimates which can iteratively 
be solved and at the same time, the former one is not 
robust but can produces a direct and simple linear analytic 
estimate. Based on the novel viewpoint of optimizing the 
measures, we are also now in a position to first derive a 
class of new robust measures induced by kernels and 
afterwards present a class of new robust denoising filters 
based on the new measures. 
 
2. Proposed Filters 
 
2.1 New Measures based on the kernels 
 
Using the Mercer kernels [4], many traditional linear 
methods have recently been generalized to powerful 
corresponding nonlinear forms, including principle 
component analysis [5], k-means clustering [6-8] and 
many applications have successfully demonstrated the 
power of such kernel methods. Our aim here is also to 
utilize the kernels to generalize the standard linear mean 
filters (but not just limited to it) to their corresponding 
nonlinear versions, more importantly, making it more 
robust to outliers. To this end, we first will induce a class 
of new robust (distance) measures for the original space 
resorting to the kernels and in the sequel develop a class 
of robust nonlinear iterative filters like the median and LC 
nonlinear filters. To our knowledge, we have not found 
similar formulation from a viewpoint of the kernel 
methods. Below is a simple description for the kernel 
methods aiming at inducing the measures based on the 
kernel functions. 
Let : ( ) ( )n HX R F R n HΦ ∈ ⊆ Φ ∈ ⊆x x  
be a nonlinear transformation into a higher (possibly 
infinite)-dimensional feature space F. In order to explain 
how to use the kernel methods, let us recall a simple 

example [11]. Assume [ ]1 2, Tx x=x and 

2 2( ) , 2 ,1 21 2
T

x x x x⎡ ⎤Φ = ⎢ ⎥⎣ ⎦x , where xi is the ith component of 

vector x and T denotes a transpose of matrix or vector. 
Then the inner product between Φ(x) and Φ(y) in the 
feature space F are: Φ (x)T Φ(y)=[(x1)2, 2 x1 x2, (x2)2] 

[(y1)2, 2 y1 y2, (y2)2] T =(xTy)2=K(x, y), hence actually 
even not knowing emplicitly the mapping Φ(x), we can 
also employ some kernel function to directly compute the 
inner product in F [4,5,11,12] defined as follows: 

( , ) ( ) ( )TK ≡ Φ Φx y x y         (5) 
The essence behind the method is to realize a more 
possible linearization for an original complex nonlinear 
problem in the mapped higher dimensional feature space 
through a (implicitly) mapping [10, 12] and hence to 
make more likely the original problem both simple and 
easy-solving in the latter space.  
There are several typical commonly-used kernel functions 
such as the radial basis function (RBF) 
kernel:
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with variance parameter σ and 0;  1 2a b≥ ≤ ≤  and 
the polynomial kernel (PK) 

( , ) ( ) ( ) ( 1)T T dK ≡ Φ Φ = +x y x y x y  with the order 
parameter d. For all RBF kernels, ( , ) 1,K x≡ ∀x x  and 
when a=b=1 and a=2 and b= 1, the RBFs become the 
exponential (Laplacian) and Gaussian RBFs (GK) 
respectively. In this paper, we will restrict our kernel to 
GK for description simplicity. From the above discussion, 
we define the (Euclidian) distance between x any y in the 
feature space as: 
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The above distance d(x, y) in the feature space 
corresponds exactly to a class of new non-Euclidian 
distances in the original space with varying kernels. It has 
proved in [6, 7] that the measures based on the RBFs 
including GK are all robust but the measure induced by 
the PK is not according to Huber M-estimator theory [9]. 
Furthermore, we can also get an by-product that the RBF 
kernel-based measures will reduce to general Lp-norm 
measures so that the Lp-norm-based filters are special 
cases of corresponding RBF kernels. A brief proof is 
formulated as follows:  
Taking the parameter σ of the RBF kernels as a sufficient  
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from 1 exp( )x x− − ≤ for all non-negative real x, we 
can obtain 
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the commonly-used Lp-norm measures when a=p and 
b=1/p. In summary, different kernels can induce different 
measures with different properties such as robustness and 
thus can induce new different filters. 
 
2.2 Proposed Filters 
 
Analogously to the derivation of the LC and median 
filters, the output of new filter (called GK filter) with 
parameter σ in terms of Eq.(6) after some algebra is given 
by 
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This is also a nonlinear iterative solution to Yi and 
expressed into a data weighted mean filter like the LC 
filter and this solution is robust in terms of Huber robust 
statistics [9]. For robustness from Eq. (7), we can give an 
intuitive explanation. By Eq. (7), the data point riX +  is 

endowed with an additional weight ),( iri YXK + , which 

measures the similarity between riX +  and iY . When 

riX +  is an outlier, i.e., riX +  is far from the other data 

points, ),( iri YXK + will be very small, thus the 
weighted sum of data points shall be suppressed and 
hence more robust to outliers. Finally, an iterative solving 
for Yi of Eq. (7) starts with an initial value iW (here) and 
terminates its stable point, i.e., when the absolute of the Yi  
 

2.3 Mean-GK Filters 
 
Their definition are straightforward like in [2] and we 
expect the mixture of both can produce better 
performance than the mean-LogCauchy filters due to the 
kernel mapping from the low dimensional space to high 
dimensional feature space. The output of the mean-GK 
filter (MGK) is 

)()1()( iiii WGKWWMGKY λλ +−==   (10) 

where λ  and iW  are defined as before. 
 
3. Experiment Description 
 
The performances of the MGK filter are evaluated and 
compared with those of the standard median (SM) and the 
MLC filter in a mixed noise environments. The original 
images (256×256 Lena and 256×256 Camera Man) 
corrupted simultaneously by Gaussian white noise 
N(0,100) and unit dispersion, zero centered 
symmetricα-stable (SαS) noise are used. Restoration 
performances are quantitatively measured and evaluated 
by the Normalized Mean Squared Error (NMSE) which is 
defined as 

[ ] [ ]2 2
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where M and N are the number of image rows and 
columns respectively, I(i, j) and R(i, j) are the pixel at 
location (i, j) in the original and reconstructed images 
respectively. 
 

Table 1. NMSEs for mixed  
Gaussian andα -stable noise 

 
Table 1 compares the performance of these filters using 
NMSE criterion. Experiments in Table 1 are carried out 
with different α values while the fraction of 
contamination ε  in the noise probability distribution P 
and the parameter λin MLC and MGK are both set equal 
to 2/(2+π) [2]. The MLC’s parameterγ=10, and the 
MGK’s parameter σ=50 in all experiments in Table 1. 
From Table 1, it can be seen that the performances of 
different filters varies with the different αvalues. 
Whenα=0.5, the impulsive behavior and heavy tails of  

Filter type 
(3×3) SM MLC10 MGK50

Lena 0.0102 0.0125 0.0120
α= 0.5  Camera 0.0109 0.0128 0.0125

Lena 0.0082 0.0077 0.0074
α= 1.2  Camera 0.0093 0.0092 0.0091

Lena 0.0081 0.0076 0.0073
α= 1.7  Camera 0.0092 0.0091 0.0090



noise are relatively strong. The SM filter gets the best 
performance. This fact accords with common knowledge 
about the SM filter’s powerful ability to suppress 
impulsive noises. Although the MGK filter does not get 
the first place in this case, its performance is still better 
the MLC filter. As αvalue increases, the impulsive 
behavior and heavy tails of noise become gradually weak. 
The SM filter does not work effectively in these 
environments. The MGK filter takes the place of the SM 
filter and achieves the first place in the performance 
contest. The MLC filter’s performance is also very 
impressive, but it still can not catch up with the MGK 
filter. 
The performances of MGK and MLC filters change with 
the parameter ε in the noise probability distribution P   
as showed in Fig 1, where λ=2/(2+π)in both filters, 
and the MLC’s parameterγ, the MGK’s parameterσare 
optimized as much as possible. The definition of NMSE 
difference is given as follows: 
NMSE Difference = NMSE(MGK) – NMSE(MLC) (12) 
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Figure 1. NMSE difference between  

       MGK and MLC filters 
 

From this figure, when ε lies in the interval [0, 0.60], the 
MGK filter outperforms the MLC filter in NMSE sense 
and when ε lies in the interval (0.60, 1], the case is 
reversed. This phenomenon just proves the important idea 
in signal processing: every filter has its strengths and 
limitations and applicable environments, an effective 
filter should be chosen according to specific 
environments and requirements — no omnipotent filter 
exists. 
 
4. Conclusions 
 
We have proposed a class of new robust nonlinear filters 
based on the Mercer kernels and given a detailed 
description for the generalized mean filter and 
comparisons with the Mean- LogCauchy and standard 

median filters, the results indicate that our proposed 
approach not only is effective but also outperforms them 
in NMSE sense in removing the mixed noise in certain 
specific conditions, which provides a supplement for the 
weaknesses of the MLC and median filters. What is more, 
as a newly-developed trick, the kernel method can be 
used to generalize the existing linear algorithms such as 
the vector mean even nonlinear vector median filters to 
their nonlinear counterparts and to make it powerful in 
the original area. 
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