Making FLDA applicable to face recognition with one sample per person

Songcan Chena,∗, Jun Liua, Zhi-Hua Zhoub

aDepartment of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
bState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Received 21 November 2003; accepted 4 December 2003

Abstract

In face recognition, the Fisherface approach based on Fisher linear discriminant analysis (FLDA) has obtained some success. However, FLDA fails when each person just has one training face sample available because of nonexistence of the intra-class scatter. In this paper, we propose to partition each face image into a set of sub-images with the same dimensionality, therefore obtaining multiple training samples for each class, and then apply FLDA to the set of newly produced samples. Experimental results on the FERET face database show that the proposed approach is feasible and better in recognition performance than E(PCA)2A.

Keywords: Face recognition; Fisher linear discriminant analysis (FLDA); One training sample per person; Pattern recognition

1. Multiple-class Fisher linear discriminant analysis (FLDA) and its inapplicability

FLDA is a popular feature extraction and discriminat-
ing approach [1] in pattern recognition. Formally, it can
briefly be formulated as follows: given c pattern classes $X^{(i)}=\{x^{(i)}_1, x^{(i)}_2, \ldots, x^{(i)}_{N_i}\}$, $i=1,2,\ldots,c$ with N_i p-dimensional patterns in the ith class, respectively. FLDA attempts to seek a set of optimal discriminating vectors to form a transform $\Phi_d=\{\varphi_1, \varphi_2, \ldots, \varphi_d\}$ by maximizing the Fisher criterion denoted as

$$J(\Phi_d) = \frac{\text{tr}(\Phi_d^T S_b \Phi_d)}{\text{tr}(\Phi_d^T S_w \Phi_d)},$$

where T denotes matrix transpose, $\text{tr}()$ denotes the trace of matrix, S_b is the inter-class scatter matrix

$$S_b = \sum_{i=1}^{c} N_i (m_i - m)(m_i - m)^T,$$

and S_w is the intra-class scatter matrix

$$S_w = \sum_{i=1}^{c} \sum_{j=1}^{N_i} (x^{(i)}_j - m_i)(x^{(i)}_j - m_i)^T,$$

m_i and m denote the means of the ith class and the whole training set, respectively. Now the maximization of the criterion $J(\Phi_d)$ gives a so-needed Φ_d by which we can extract discriminating features for any input pattern for subsequent classification. Here the rank, d, of Φ_d, i.e., the number of the discriminating vectors able to be extracted, is at most $\min(c-1,p)$ [1]. Although FLDA has obtained some success in face recognition, it obviously cannot be applied to cases where any class or person only has one training pattern available because of the non-existence of S_w in $J(\Phi_d)$. In this paper, we will propose an approach to address this issue.

2. Proposed approach

2.1. Constructing multiple training patterns from single image for each class

A key to making FLDA applicable in a single training pattern scenario may be to increase the number of training
patterns of each class. Previous works used virtual patterns [2] or new assembled patterns [3] for this purpose, where an enlarged or a new re-assembled training set for each class is obtained through slightly changing and perturbing the training sample. Different from these methods, we simply partition the whole pattern into a set of non-overlapping sub-patterns with specified dimensionality, e.g. 25 or 15, respectively, for 5×5 or 5×3 partitioned sub-image blocks, to construct a new training sub-set for each class. As a consequence, a new training set containing the same number of class as the original recognition problem can be obtained, where each class has multiple training samples. It is obvious that FLDA is applicable to the new training set.

2.2. Classification

After acquiring so-needed optimal discriminating vectors with multiple-class FLDA described in Section 1, the next step is to classify an unknown face image. Unlike the recognition method based on a whole face, we now are, instead, based on a set of sub-patterns partitioned from the global (face) pattern. Hence, we first project all partitioned sub-patterns of the unknown face onto the discriminating vectors by Φ_d and then use them for recognition. In this paper, we propose two classification strategies (CS1 and CS2): classification based on a pattern which is obtained by assembling all projected sub-patterns using 1-nearest neighbors (1-NN), and classification based on majority voting for all k-NN decisions on each projected sub-pattern, respectively. Below is a brief description for both CS1 and CS2.

Let I be an unknown face image to be recognized with $m \times n$ dimension and be partitioned into K non-overlapping sub-patterns $\{I_1, I_2, \ldots, I_K\}$ with p dimension each, where p is taken as 25 or 15 corresponding to 5×5 or 5×3 partitioned sub-image. Now, we project all I_k through Φ_d to generate corresponding projected sub-patterns $\{pI_k = (\Phi_d)^T I_k, k = 1, 2, \ldots, K\}$. In CS1, we first assemble them into a global projected vector $pI = [pI_1, pI_2, \ldots, pI_K]^T$ and then classify it with 1-NN. While in CS2, instead of assembling, we first separately classify each projected sub-patterns, pI_k, of the unknown face image using k-NN rule to obtain a corresponding multiple class label set $CL_k (k = 1, 2, \ldots, K)$ (for example, $CL_k = \{\text{class1, class3, class5}\}$) and then employ the majority-voting rule to make final classification for the presented unknown face image I based on all obtained class labels $CL_k (k = 1, 2, \ldots, K)$. Here the occurrence of the multiple-class labels attributes to such a fact that several different faces or patterns may share some sub-patterns that are exactly some of the k-NN to some sub-patterns of the face to be recognized.

3. Experimental results

3.1. Dataset

We conduct experiments on a subset of the FERET face database [2,4]. The database comprises 400 gray-level frontal view face images from 200 persons, with the size of 256 \times 384. There are 71 females and 129 males, each of whom has two images (fa and fb) with different race, different gender, different age, different expression, different illumination, different occlusion, different scale, etc. The fa images are used for training while the fb images for testing. Some raw images are shown in Fig. 1. In our experiments, all faces are normalized to satisfy some constraints so that each face could be appropriately cropped. Those constraints include that the line between the two eyes is parallel to the horizontal axis, the inter-ocular distance (distance between the two eyes) is set to a fixed value, and the size of the image is fixed. Here the eyes are manually located and after a series of rotating and resizing, the cropped image size is 60×60 pixels and the inter-ocular distance is 28 pixels.

3.2. Results

We compare the obtained classification results with those of E(\text{PC})^2A [2]. E(\text{PC})^2A applies principle component analysis (PCA) to extract features on an enlarged or

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition rates (%)</td>
</tr>
<tr>
<td>CS1</td>
</tr>
<tr>
<td>5×3</td>
</tr>
<tr>
<td>85.0(4)</td>
</tr>
<tr>
<td>86.0(6)</td>
</tr>
</tbody>
</table>

d in the parentheses denotes the number of selected projections.
modified training set for subsequent classification and achieves an optimal recognition rate of 85.5% on the experimental database. Tables 1 and 2 show that the maxima of our recognition rates exceed this value, dependent on the number d of the selected projections. Concretely, the recognition rate is 86.5%, raising 1% point compared to the E(PC)²A method. Table 2 discloses that different k values in k-NN have different influences on recognition performance. Small or large k values (such as 1 or 13) do not produce good results while the moderate k values (3–9) lead to relatively stable recognition results (ranging from 84–86.5%). Therefore, on the whole, our approach is better but it is needed to select an appropriate k value.

4. Conclusion

We propose a simple but effective approach to making FLDA applicable in the situation where each class just has one training pattern. Experiments show that the proposed method is not only feasible but also better in recognition performance than E(PC)²A.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the Grant No. 60271017, the National Outstanding Youth Foundation of China under the Grant No. 60325207, the Natural Science Foundation of Jiangsu Province under the Grant No. BK2002092, the QingLan Project Foundation of Jiangsu Province, and the Returnee Foundation of China Scholarship Council. Portions of the research in this paper use the FERET database of facial images collected under the FERET program.

References